16-Kaurene-2,6,15-triolCAS# 53452-32-7 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 53452-32-7 | SDF | Download SDF |
PubChem ID | 73554068 | Appearance | Powder |
Formula | C20H32O3 | M.Wt | 320.5 |
Type of Compound | Diterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1R,4S,9R,10R,13R)-5,5,9-trimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-3,7,15-triol | ||
SMILES | CC1(CC(CC2(C1C(CC34C2CCC(C3)C(=C)C4O)O)C)O)C | ||
Standard InChIKey | OUDUFOYDAUOXPD-UZHLRENFSA-N | ||
Standard InChI | InChI=1S/C20H32O3/c1-11-12-5-6-15-19(4)9-13(21)8-18(2,3)16(19)14(22)10-20(15,7-12)17(11)23/h12-17,21-23H,1,5-10H2,2-4H3/t12-,13?,14?,15-,16+,17?,19-,20-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
16-Kaurene-2,6,15-triol Dilution Calculator
16-Kaurene-2,6,15-triol Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.1201 mL | 15.6006 mL | 31.2012 mL | 62.4025 mL | 78.0031 mL |
5 mM | 0.624 mL | 3.1201 mL | 6.2402 mL | 12.4805 mL | 15.6006 mL |
10 mM | 0.312 mL | 1.5601 mL | 3.1201 mL | 6.2402 mL | 7.8003 mL |
50 mM | 0.0624 mL | 0.312 mL | 0.624 mL | 1.248 mL | 1.5601 mL |
100 mM | 0.0312 mL | 0.156 mL | 0.312 mL | 0.624 mL | 0.78 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Vaccarin
Catalog No.:BCN2277
CAS No.:53452-16-7
- 2-Aminonicotinic acid
Catalog No.:BCC8552
CAS No.:5345-47-1
- D-Leu-ol
Catalog No.:BCC2583
CAS No.:53448-09-2
- 2-Aminodiphenylamine
Catalog No.:BCC8548
CAS No.:534-85-0
- Erteberel (LY500307)
Catalog No.:BCC4491
CAS No.:533884-09-2
- Isovitexin 2'-O-arabinoside
Catalog No.:BCN7826
CAS No.:53382-71-1
- 1,3,5-Trihydroxy-4-prenylxanthone
Catalog No.:BCN5705
CAS No.:53377-61-0
- trans,trans-Bis(4-fluorobenzal)acetone
Catalog No.:BCC9180
CAS No.:53369-00-9
- Boc-N-Me-Leu-OH
Catalog No.:BCC2616
CAS No.:53363-89-6
- Z-Leu-OH.DCHA
Catalog No.:BCC2765
CAS No.:53363-87-4
- PP 3
Catalog No.:BCC7486
CAS No.:5334-30-5
- Isogosferol
Catalog No.:BCN5704
CAS No.:53319-52-1
- Creticoside C
Catalog No.:BCN5707
CAS No.:53452-34-9
- 4-Methoxycinnamyl alcohol
Catalog No.:BCN7515
CAS No.:53484-50-7
- Apohyoscine
Catalog No.:BCN1870
CAS No.:535-26-2
- Pipecolinic acid
Catalog No.:BCN8150
CAS No.:535-75-1
- Trigonelline
Catalog No.:BCN2371
CAS No.:535-83-1
- Marein
Catalog No.:BCN6477
CAS No.:535-96-6
- PIT 1
Catalog No.:BCC7873
CAS No.:53501-41-0
- 4,9,9'-Trihydroxy-3,3'-dimethoxy-8,4'-oxyneolignan
Catalog No.:BCN1425
CAS No.:53505-68-3
- 7-Amino-4-(Trifluoromethyl)Coumarin
Catalog No.:BCC9208
CAS No.:53518-15-3
- Durantoside II
Catalog No.:BCN4622
CAS No.:53526-66-2
- Durantoside I
Catalog No.:BCN4621
CAS No.:53526-67-3
- Luteolin-3-O-beta-D-glucuronide
Catalog No.:BCN3826
CAS No.:53527-42-7
Efficient Synthesis of 1,9-Substituted Benzo[h][1,6]naphthyridin-2(1H)-ones and Evaluation of their Plasmodium falciparum Gametocytocidal Activities.[Pubmed:29024590]
ACS Comb Sci. 2017 Dec 11;19(12):748-754.
A novel three-component, two-step, one-pot nucleophilic aromatic substitution (SNAr)-intramolecular cyclization-Suzuki coupling reaction was developed for the synthesis of benzo[h][1,6]naphthyridin-2(1H)-ones (Torins). On the basis of the new efficiently convergent synthetic route, a library of Torin analogs was synthesized. The antimalarial activities of these compounds were evaluated against asexual parasites using a growth inhibition assay and gametocytes using a viability assay.
Intelligence and all-cause mortality in the 6-Day Sample of the Scottish Mental Survey 1947 and their siblings: testing the contribution of family background.[Pubmed:29025063]
Int J Epidemiol. 2018 Feb 1;47(1):89-96.
Background: Higher early-life intelligence is associated with a reduced risk of mortality in adulthood, though this association is apparently hardly attenuated when accounting for early-life socio-economic status (SES). However, the use of proxy measures of SES means that residual confounding may underestimate this attenuation. In the present study, the potential confounding effect of early-life SES was instead accounted for by examining the intelligence-mortality association within families. Methods: The association between early-life intelligence and mortality in adulthood was assessed in 727 members of the 6-Day Sample of the Scottish Mental Survey 1947 and, for the first time, 1580 of their younger siblings. These individuals were born between 1936 and 1958, and were followed up into later life, with deaths recorded up to 2015. Cox regression was used to estimate the relative risk of mortality associated with higher IQ scores after adjusting for shared family factors. Results: A standard-deviation advantage in IQ score was associated with a significantly reduced mortality risk [hazard ratio = 0.76, p < 0.001, 95% confidence interval (CI) (0.68-0.84)]. This reduction in hazard was only slightly attenuated by adjusting for sex and shared family factors [hazard ratio = 0.79, p = 0.002, 95% CI (0.68-0.92)]. Conclusions: Although somewhat conservative, adjusting for all variance shared by a family avoids any potential residual confounding of the intelligence-mortality association arising from the use of proxy measures of early-life SES. The present study demonstrates that the longevity associated with higher early-life intelligence cannot be explained by early-life SES or within-family factors.
Functional interleukin-6 receptor-alpha is located in tanycytes at the base of the third ventricle.[Pubmed:29024103]
J Neuroendocrinol. 2017 Dec;29(12).
Interleukin (IL)-6(-) /(-) mice develop mature onset obesity, whereas i.c.v. injection of IL-6 decreases obesity in rodents. Moreover, levels of IL-6 in cerebrospinal fluid (CSF) were reported to be inversely correlated with obesity in humans. Tanycytes lining the base of the third ventricle (3V) in the hypothalamus have recently been reported to be of importance for metabolism. In the present study, we investigated whether tanycytes could respond to IL-6 in the CSF. With immunohistochemistry using a well characterised antibody directed against the ligand binding receptor for IL-6, IL-6 receptor alpha (IL-6Ralpha), it was found that tanycytes, identified by the two markers, vimentin and dopamine- and cAMP-regulated phosphoprotein of 32 kDa, contained IL-6Ralpha. There were fewer IL-6Ralpha on another type of ventricle-lining cells, ependymal cells, as identified by the marker glucose transporter-1. To demonstrate that the immunoreactive IL-6Ralpha were responsive to IL-6, we injected IL-6 i.c.v. This treatment increased immunoreactive phosphorylated signal transducer and activator of transcription-3 (pSTAT3) in tanycytes after 5 minutes and in cells in the medial part of the arcuate nucleus after 5 and 15 minutes. Intracerebroventricular injection of leptin exerted similar effects. As expected, i.p. injection of leptin also induced pSTAT3 staining in the hypothalamus, whereas i.p. IL-6 injection had little effect on this parameter. Intracerebroventricular or i.p. injection of vehicle only had no effect on pSTAT3-immunoreactivity. In summary, there are functional IL-6Ralpha on tanycytes at the bottom of the 3V, in agreement with the possibility that ventricular administration of IL-6 decreases obesity in mice via an effect on this cell type.