Deacetylnomilinic acidCAS# 35930-21-3 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 35930-21-3 | SDF | Download SDF |
PubChem ID | 13857951 | Appearance | Powder |
Formula | C26H34O9 | M.Wt | 490.5 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 3-[11-(furan-3-yl)-5-(2-hydroxypropan-2-yl)-2,6,10-trimethyl-3,13-dioxo-12,15-dioxatetracyclo[8.5.0.01,14.02,7]pentadecan-6-yl]-3-hydroxypropanoic acid | ||
SMILES | CC12CCC3C(C(CC(=O)C3(C14C(O4)C(=O)OC2C5=COC=C5)C)C(C)(C)O)(C)C(CC(=O)O)O | ||
Standard InChIKey | OZOFRBKHLATMMU-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C26H34O9/c1-22(2,32)15-10-17(28)25(5)14(24(15,4)16(27)11-18(29)30)6-8-23(3)19(13-7-9-33-12-13)34-21(31)20-26(23,25)35-20/h7,9,12,14-16,19-20,27,32H,6,8,10-11H2,1-5H3,(H,29,30) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Deacetylnomilinic acid Dilution Calculator
Deacetylnomilinic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0387 mL | 10.1937 mL | 20.3874 mL | 40.7747 mL | 50.9684 mL |
5 mM | 0.4077 mL | 2.0387 mL | 4.0775 mL | 8.1549 mL | 10.1937 mL |
10 mM | 0.2039 mL | 1.0194 mL | 2.0387 mL | 4.0775 mL | 5.0968 mL |
50 mM | 0.0408 mL | 0.2039 mL | 0.4077 mL | 0.8155 mL | 1.0194 mL |
100 mM | 0.0204 mL | 0.1019 mL | 0.2039 mL | 0.4077 mL | 0.5097 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Ichangin
Catalog No.:BCX0429
CAS No.:10171-61-6
- Obacunone 17-O-glucoside
Catalog No.:BCX0428
CAS No.:123564-64-7
- 3-epi-Actinidic acid
Catalog No.:BCX0427
CAS No.:143839-01-4
- (±)-Dihydrodehydrodiconiferyl alcohol
Catalog No.:BCX0426
CAS No.:85165-02-2
- (-)-Isolariciresinol
Catalog No.:BCX0425
CAS No.:110268-37-6
- 21,23-Dihydro-21-hydroxy-23-oxonomilin
Catalog No.:BCX0424
CAS No.:2243600-32-8
- Procymidone
Catalog No.:BCX0423
CAS No.:32809-16-8
- Azoxystrobin
Catalog No.:BCX0422
CAS No.:131860-33-8
- 5α,6α-Epoxyergosta-8,22-diene-3β,7α-diol
Catalog No.:BCX0421
CAS No.:16250-61-6
- 20(R)-Hydroxypregn-4-en-3-one
Catalog No.:BCX0420
CAS No.:145-15-3
- 5α,6α-Epoxyergosta-8(14),22-diene-3β,7α-diol
Catalog No.:BCX0419
CAS No.:22259-18-3
- Lycoperodine 1
Catalog No.:BCX0418
CAS No.:6052-68-2
- Anisyl alcohol
Catalog No.:BCX0431
CAS No.:105-13-5
- Carbendazim
Catalog No.:BCX0432
CAS No.:10605-21-7
- (2Z,6E)-Farnesyl acetate
Catalog No.:BCX0433
CAS No.:40266-29-3
- Isolimonic acid
Catalog No.:BCX0434
CAS No.:74729-97-8
- Anibadimer A
Catalog No.:BCX0435
CAS No.:23768-65-2
- 5-Deoxyisorhoifolin
Catalog No.:BCX0436
CAS No.:2055239-29-5
- 1(10)Z,4Z-Furanodienone
Catalog No.:BCX0437
CAS No.:88010-63-3
- Thalifaronine
Catalog No.:BCX0438
CAS No.:105458-70-6
- Huazhongilexol
Catalog No.:BCX0439
CAS No.:161407-80-3
- Thalifaramine
Catalog No.:BCX0440
CAS No.:105437-16-9
- (12Z)-Labda-8(17),12-diene-14,15,16-triol
Catalog No.:BCX0441
CAS No.:1630864-26-4
- Citrusin
Catalog No.:BCX0442
CAS No.:108943-57-3
Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO.[Pubmed:20864476]
Microbiology (Reading). 2011 Jan;157(Pt 1):99-110.
Citrus limonoids are unique secondary metabolites, characterized by a triterpenoid skeleton with a furan ring. Studies have demonstrated beneficial health properties of limonoids. In addition, certain citrus limonoids play a role in plant defence against insect pests. In the present study, five limonoids were purified from sour orange and evaluated for their ability to inhibit cell-cell signalling. The purified limonoids were tested for their ability to interfere with cell-cell signalling and biofilm formation in Vibrio harveyi. Isolimonic acid, Deacetylnomilinic acid glucoside and ichangin demonstrated significant inhibition of autoinducer-mediated cell-cell signalling and biofilm formation. Furthermore, isolimonic acid and ichangin treatment resulted in induced expression of the response regulator gene luxO. In addition, luxR promoter activity was not affected by isolimonic acid or ichangin. Therefore, the ability of isolimonic acid and ichangin to interfere with cell-cell signalling and biofilm formation seems to stem from the modulation of luxO expression. The results suggest that isolimonic acid and ichangin are potent modulators of bacterial cell-cell signalling.
Limonin methoxylation influences the induction of glutathione S-transferase and quinone reductase.[Pubmed:19480426]
J Agric Food Chem. 2009 Jun 24;57(12):5279-86.
Previous studies have indicated the chemopreventive potential of citrus limonoids due to the induction of phase II detoxifying enzymes. In the present study, three citrus limonoids were purified and identified from sour orange seeds as limonin, limonin glucoside (LG), and Deacetylnomilinic acid glucoside (DNAG). In addition, limonin was modified to defuran limonin and limonin 7-methoxime. The structures of these compounds were confirmed by NMR studies. These five compounds were used to investigate the influence of phase II enzymes in female A/J mice. Our results indicated the highest induction of glutathione S-transferase (GST) activity against 1-chloro-2,4-dinitrobenzene (CDNB) by DNAG (67%) in lung homogenates followed by limonin-7-methoxime (32%) in treated liver homogenates. Interestingly, limonin-7-methoxime showed the highest GST activity (270%) in liver against 4-nitroquinoline 1-oxide (4NQO), while the same compound in the stomach induced GST by 51% compared to the control. The DNAG treated group induced 55% in stomach homogenates. Another phase II enzyme, quinone reductase (QR), was significantly induced by limonin-7-methoxime by 65 and 32% in liver and lung homogenates, respectively. Defuran limonin induced QR in lung homogenates by 45%. Our results indicated that modification of limonin has differential induction of phase II enzymes. These findings are indicative of a possible mechanism for the prevention of cancer by aiding in the detoxification of xenobiotics.
Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity.[Pubmed:15795449]
J Nutr. 2005 Apr;135(4):870-7.
Citrus limonoid glucosides, a family of fruit bioactive compounds, were postulated to have free radical-scavenging and apoptosis-inducing properties against certain types of cancers. Four highly purified limonoid glucosides, limoin 17beta D-glucopypranoside (LG), obacunone 17beta D-glucopyranoside (OG), nomilinic acid 17beta D-glucopyranoside (NAG), and Deacetylnomilinic acid 17beta D-glucopyranoside (DNAG) were tested for superoxide radical (O(2)(-))-quenching activity and cytotoxic action against undifferentiated human SH-SY5Y neuroblastoma cells in culture. All 4 scavenged O(2)(-) as measured by inhibition of pyrogallol decomposition in a spectrophotometric assay. Quenching by NAG in particular emulated an equivalent concentration of vitamin C. When added to the medium of SH-SY5Y cells in culture, micromolar amounts of LG and OG, compared with untreated controls, caused a cessation of cell growth and rapid cell death (P < 0.001); NAG and DNAG were better tolerated, but nonetheless toxic as well. Cytotoxicity was related to a concentration- and time-dependent increase in caspase 3/7 activity, suggesting that limonoid glucosides were capable of inducing apoptosis. Arrested cell growth and the induction of apoptosis were confirmed by flow cytometry and DNA fragmentation analysis. Importantly, caspase induction at 12 h correlated with cell survival at 24 h (P = 0.046), suggesting that apoptosis was the primary cause of cell death. We conclude that citrus limonoid glucosides are toxic to SH-SY5Y cancer cells. Cytotoxicity is exerted through apoptosis by an as yet unknown mechanism of induction. Individual limonoid glucosides differ in efficacy as anticancer agents, and this difference may reside in structural variations in the A ring of the limonoid molecule.