Home >>Botany >> Abutilon indicum

Abutilon indicum

Abutilon indicum

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Abutilon indicum

  1. Cat.No. Product Name CAS Number COA
  2. BCN7987 Gossypin652-78-8 Instructions

References

In vivo bio-distribution, clearance and toxicity assessment of biogenic silver and gold nanoparticles synthesized from Abutilon indicum in Wistar rats.[Pubmed: 29773174]


This study reports the bio-distribution and clearance of Abutilon indicum silver and gold nanoparticles (AIAgNPs and AIAuNPs) in Wistar rats. Rats in different groups were orally administered with 5 and 10 mg/Kg BW of AIAgNPs and AIAuNPs (size 1-25 nm) for 28 days and few were maintained until 58 days of washout period. Serum biochemical parameters were not changed significantly at both doses of AIAuNPs and at lower concentration of AIAgNPs. But, with 10 mg/Kg BW of AIAgNPs rats showed elevated levels of AST, ALP and ALT on day 29, however, these levels were restored to normal after washout period. Liver oxidative stress markers were not altered with the treatment of AIAgNPs and AIAuNPs. ICP-OES analysis indicated bio-distribution of Ag and Au more in liver, kidney and spleen on day 29 and was found cleared on day 59. Histological analysis of nine vital organs indicated normal tissue architecture at both doses of AIAuNPs and lower dose of AIAgNPs. While the rats treated with higher dose of AIAgNPs showed mild liver sinusoid cell swelling on day 29, which also was recovered on day 59. Findings of this preclinical study indicate biocompatible nature of biogenic nanoparticles supporting their future biomedical applications.


Ethnomedicinal, Phytochemical and Ethnopharmacological Aspects of Four Medicinal Plants of Malvaceae Used in Indian Traditional Medicines: A Review.[Pubmed: 29057840]


The ethnomedicinal values of plants form the basis of the herbal drug industry. India has contributed its knowledge of traditional system medicines (Ayurveda and Siddha) to develop herbal medicines with negligible side effects. The World Health Organization has also recognized the benefits of drugs developed from natural products. Abutilon indicum, Hibiscus sabdariffa, Sida acuta and Sida rhombifolia are ethnomedicinal plants of Malvaceae, commonly used in Indian traditional system of medicines. Traditionally these plants were used in the form of extracts/powder/paste by tribal populations of India for treating common ailments like cough and cold, fever, stomach, kidney and liver disorders, pains, inflammations, wounds, etc. The present review is an overview of phytochemistry and ethnopharmacological studies that support many of the traditional ethnomedicinal uses of these plants. Many phytoconstituents have been isolated from the four ethnomedicinal plants and some of them have shown pharmacological activities that have been demonstrated by in vivo and/or in vitro experiments. Ethnomedicinal uses, supported by scientific evidences is essential for ensuring safe and effective utilization of herbal medicines.


Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities.[Pubmed: 29025674]


In the present study, green synthesis and determination of the antioxidant, antibacterial, antifungal, anticancer and photocatalytic properties of the resultant Cu-doped zinc oxide nanoparticles (NAPs) were carried out. A superficial method (solution combustion method) was employed for the synthesis of un-doped ZnO NAPs from aqueous extract of Abutilon indicum, and synthesis of Cu-doped ZnO NAPs from aqueous extracts of Clerodendrum infortunatum (M1 NAPs) and Clerodendrum inerme (M2 NAPs). The synthesized un-doped ZnO, M1 and M2 NAPs were characterized by different spectroscopic techniques like Ultraviolet-visible (UV-Vis), Fourier Transform-Infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The antibacterial and antifungal activities of M1 and M2 NAPs were determined by agar diffusion method, while their antioxidant properties were assessed through DPPH radical scavenging and ferric thiocyanate (FTC) and assays. Under sunlight irradiation, photocatalytic disintegration potential of M1 and M2 NAPs were determined by the degradation of Acid Black 234 dye. Results from FT-IR, XRD, EDX and SEM confirmed successful synthesis, crystalline nature, and spheroid-to-rod-like shapes of un-doped ZnO, M1 and M2 NAPs, with grain sizes of 16.72nm, 17.49nm and 20.73nm; and band gap energies of 3.37eV, 3.36eV and 3.31eV, respectively. The NAPs were good catalysts for effective degradation of Acid Black 234. They also exhibited remarkable antioxidant and anticancer activities. Significant antibacterial activity was shown by M2 NAPs against E. coli, S. aureus, Klebsiella and B. subtilis, with zones of inhibition (ZOIs) of 13±0.09, 14±0.01, 18±0.07 and 20±0.10, respectively. Significant antifungal potential was also produced by M2 NAPs at 5mg with ZOIs of 17±0.07 and 24±0.08 against A. niger and T. harzianum, respectively. These results indicate that aqueous extracts of A. indicum, C. infortunatum and C. inerme are effective reducing agents for green synthesis of un-doped ZnO, and Cu-doped ZnO NAPs with significant antimicrobial, antioxidant, and antifungal potential. Thus they are good candidates for future therapeutic applications.


Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels.[Pubmed: 28719999]


Recently, there has been an upsurge in the use of naturally available fuels for solution combustion synthesis (SCS) of nanoparticles. Although many reports suggest that these biofuels pose less harm to the environment, their strategic advantages and reliability for making NPs has not been discussed. In the present work, we try to address this issue using plant extracts as biofuels for the SCS of zinc oxide nanoparticles as a model system. In the present work, combustion synthesis of ZnO NPs using lactose and aqueous leaf extracts of Abutilon indicum, Melia azedarach, Indigofera tinctoria as biofuels has been carried out. A comparative analysis of the obtained powders has been conducted to understand the strategic advantages of using plant extracts over a chemical as combustion fuel for the synthesis of zinc oxide nanoparticles. The X-ray diffractograms of the samples revealed the presence of Wurtzite hexagonal structure with varying crystallite sizes. Morphological studies indicated that samples prepared using biofuels had smaller diameter than those prepared using lactose as fuel. Surface characteristics of the samples were measured by X-ray photoelectron spectroscopy. Qualitative phytochemical screening of aqueous leaf extracts revealed the presence of many phytochemicals in them, which might be responsible for combustion. Gas chromatography mass spectrum was carried out to detect the phytochemicals present in the aqueous extracts of the leaves. Further, anticancer evaluation carried out against DU-145 and Calu-6 cancer cells indicated higher anticancer activity of zinc oxide nanoparticles prepared using biofuels. The results of blood haemolysis revealed the biocompatibility of zinc oxide nanoparticles at lower concentrations. In conclusion, we propose that multiple other studies would be required in order to vindicate the potential advantages of using naturally available fuels in SCS.


Regeneration-Based Quantification of Coumarins (Scopoletin and Scoparone) in Abutilon indicum In Vitro Cultures.[Pubmed: 27188970]


Abutilon indicum exploited for its immense value has been propagated successfully through multiple shoot induction and somatic embryogenesis. Direct regeneration (8.20 ± 0.83 shoots) was achieved from nodal explants using 0.5 mg/l kinetin (Kn) in MS media. The basal callus from nodal explants turned embryogenic on subsequent introduction of 0.2 mg/l TDZ into the Kn-supplemented media, giving rise to somatic embryos. The embryogenic potential of calli expressed in terms of embryo-forming capacity (EFC) increased from 8.15 EFC to 20.95 EFC after plasmolysis. The phytochemical analysis (HPLC) for the presence of scopoletin and scoparone has revealed a unique accumulation pattern, with higher levels of scopoletin during the earlier stages and scoparone in the later stages of development. The embryogenic calli contained the highest amount of coumarins (99.20 ± 0.97 and 61.03 ± 0.47 μg/gFW, respectively) followed by regenerated plant (9.43 ± 0.20 and 36.36 ± 1.19 μg/gFW, respectively), obtained via somatic embryogenesis. Rapid multiplication of A. indicum equipped with two potent coumarins is important in order to meet the commercial demand for combat against dreadful diseases, thereby providing a new platform for plant-based drugs and their manufacture on a commercial scale.


Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells.[Pubmed: 27038915]


Green synthesized gold nanoparticles have received substantial attention owing to their biomedical applications, particularly in cancer therapy. Although anticancer activities of green synthesized gold nanoparticles have been reported earlier, the underlying mechanism behind their anticancer activity is still to be understood. The present study, describes the green synthesis of Abutilon indicum gold nanoparticles (AIGNPs) from Abutilon indicum leaf extract (AILE) and their cytotoxic mechanism in colon cancer cells. Dimensions of spherical shaped AIGNPs were found to be in the range of 1-20nm as determined by TEM. GC-MS and FTIR analysis indicated the presence of polyphenolic groups in AILE, which might have been involved in the stabilization of AIGNPs. In vitro free radical scavenging analysis revealed the radical quenching activity of AIGNPs. Further, the AIGNPs exhibited cytotoxicity in HT-29 colon cancer cells with IC50 values of 210 and 180μg/mL after 24 and 48h. This was mediated through nuclear morphological changes and cell membrane damage as evidenced by acridine orange/ethidium bromide, propidium iodide and AnnexinV-Cy3 staining methods. Mechanism of the observed cytotoxicity of AIGNPs was explained on the basis of increased levels of reactive oxygen species and simultaneous reduction in cellular antioxidants, which might have caused mitochondrial membrane potential loss, DNA damage and G1/S phase cell cycle arrest. Expression of cleaved Caspase-9, Caspase-8, Caspase-3, Lamin A/C and PARP, provided the clues for the induction of intrinsic and extrinsic apoptosis pathways in AIGNPs treated HT-29 cells. The study provides a preliminary guidance towards the development of colon cancer therapy using green synthesized gold nanoparticles.


Development, Characterization, and Evaluation of Hepatoprotective Effect of Abutilon indicum and Piper longum Phytosomes.[Pubmed: 26941533]


Evidences from ethnopharmacological practices have shown that combination of Abutilon indicum and Piper longum are traditionally used to treat symptoms of the liver disorder. The hypothesis is phytosomes of a combination of both crude drug extract will be more effective and safe as hepatoprotective agent.


Abutilon indicum L.: a prospective weed for phytoremediation.[Pubmed: 26215827]


This study was aimed to determine the uptake and accumulation potential of a weed (Abutilon indicum L.) for phytoremediation of soil contaminated with cadmium. Plants were grown in soil spiked with 0, 2.5, 5, 10, 15, 20, 25 mg/kg Cd, individually. Plants sample (root and shoot) were analyzed for Cd content at 30, 60, and 90 days and accumulation trends were characterized. A steady increase in Cd accumulation with increasing metal concentration and exposure period was observed for all treatments. Accumulation of Cd in roots was found to be 4.3-7.7 times higher than that of shoots. Statistically significant difference (P ≤ 0.001) in mean metal content in root and shoot at successive days of study was recorded. Effect of Cd on growth and physiology was also evaluated. At higher Cd levels, root and shoot length and biomass of test plant were reduced significantly. Although, growth was delayed initially, it was comparable to control at the end of the study. Chlorophyll and proline content declined with the increase in Cd concentration at 30 and 60 days after treatment. However, at 90 days, values were more or less comparable to the control values showing the adaptability of test plant in Cd contamination. Considering the accumulation ability, BCF >1 (bioconcentration factor) and TF <1 (translocation factor) established A. indicum as a potential candidate plant for phytoremediation. Hence, phytoremediation employing indigenous weed species like A. indicum can be an ecologically viable option for sustainable and cost-effective management of heavy metal-contaminated soils.