Home >>Botany >> Azadirachta indica

Azadirachta indica

Azadirachta indica

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Azadirachta indica

  1. Cat.No. Product Name CAS Number COA
  2. BCC8123 Azadirachtin11141-17-6 Instructions

References

Actinomadura rhizosphaerae sp. nov., isolated from rhizosphere soil of the plant Azadirachta indica.[Pubmed: 30063200]


None


Efficacy of Azadirachta indica organic extracts against clinical methicillin resistant Staphylococcus aureus isolates.[Pubmed: 30058539]


None


Efficacy of herbal extracts and closantel against fenbendazole-resistant Haemonchus contortus.[Pubmed: 30039771]


This study assessed the efficacy of closantel vis-à-vis herbal extracts with known anti-parasitic properties, against fenbendazole-resistant nematodes in goats maintained under a semi-intensive system of management at the University goat farm, Jabalpur. Fifty goats were randomly assigned to five groups, each comprising 10 animals, irrespective of their breed, age and sex. Each animal in Group I, II and III was orally administered with aqueous leaf extracts of neem (Azadirachta indica) at 1 g/kg body weight, sitaphal (Annona squamosa) at 1.5 g/kg body weight and tobacco (Nicotiana tabacum) at 1 g/kg body weight, respectively, whereas Group IV was an untreated control group. Each animal in Group V was orally treated with closantel at 10 mg/kg body weight. During the course of the study, all animals were maintained under an identical semi-intensive system of management. Compared to the untreated control group (Group IV), there was no conspicuous reduction in post-treatment (day 10) faecal egg counts (FEC) in animals administered with the herbal extracts (Groups I, II and III), which is suggestive of poor anti-parasitic activity. However, using the faecal egg count reduction test (FECRT), the overall efficacy of closantel was recorded as 95.64%. This supports the rotational use of closantel as a preferred choice over the benzimidazole group of anthelmintics and/or herbal extracts to meet the acute challenge of in situ development of drug-resistant gastrointestinal nematodes, especially Haemonchus contortus.


Antifilarial activity of azadirachtin fuelled through reactive oxygen species induced apoptosis: a thorough molecular study on Setaria cervi.[Pubmed: 30032733]


Efficacious therapeutic strategies against lymphatic filariasis are always sought after. However, natural products are a promising resource for developing effective antifilarial agents. Azadirachtin, a significant tetranortriterpenoid phytocompound found in Azadirachta indica, was evaluated in vitro for antifilarial potential against the filarial parasite Setaria cervi. Dye exclusion and MTT assay confirmed the antifilarial potential of azadirachtin against S. cervi with a median lethal dose (LC50) of 6.28 μg/ml for microfilariae (mf), and 9.55 μg/ml for adult parasites. Morphological aberrations were prominent in the histological sections of the azadirachtin-exposed parasites. Moreover, alterations in the reactive oxygen species (ROS) parameters in treated parasites were evident. Induction of apoptosis in treated parasites was confirmed by DNA laddering, acridine orange (AO)/ethidium bromide (EtBr) double staining and in situ DNA fragmentation. The downregulation of anti-apoptotic CED-9 and upregulation of proapoptotic EGL-1, CED-4 and CED-3 at both the transcription and translation levels confirmed apoptosis execution at the molecular level. Changes in the gene expressions of nuc-1, cps-6 and crn-1 further clarified the molecular cause of DNA degradation. Furthermore, azadirachtin was found to be non-toxic in both in vitro and in vivo toxicity analyses. Therefore, the experimental evidence detailed the pharmacological effectiveness of azadirachtin as a possible therapeutic agent against filariasis.


Simultaneous determination of five azadirachtins in the seed and leaf extracts of Azadirachta indica by automated online solid-phase extraction coupled with LC-Q-TOF-MS.[Pubmed: 30027362]


None