Home >>Botany >> Codonopsis lanceolata

Codonopsis lanceolata

Codonopsis lanceolata

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Codonopsis lanceolata

  1. Cat.No. Product Name CAS Number COA
  2. BCN5628 Echinocystic acid510-30-5 Instructions

References

Identification of volatile markers for the detection of adulterants in red ginseng (Panax ginseng) juice using headspace stir-bar sorptive extraction coupled with gas chromatography and mass spectrometry.[Pubmed: 29797772]


Red ginseng (Panax ginseng) products are frequently adulterated by manufacturers with cheaper medicinal plant products including deodeok (Codonopsis lanceolata) and doraji (Platycodon grandiflorum) to increase profits. To identify possible volatile markers for the adulteration of red ginseng juices with deodeok or doraji, a headspace stir-bar sorptive extraction method was developed. Gas chromatography with mass spectrometry and untargeted metabolomics analysis revealed that 1-hexanol, cis-3-hexen-1-ol, and trans-2-hexen-1-ol are abundantly present in deodeok and doraji but not red ginseng. The peak area ratios in gas chromatograms of these compounds in red ginseng juices mixed with deodeok or doraji indicate that these volatile chemicals can be used as markers to detect the adulteration of red ginseng juice.


Codonopsis lanceolata extract prevents hypertension in rats.[Pubmed: 29433673]


Codonopsis lanceolata, a plant with antioxidant, anti-cancer, anti-inflammatory and blood lipid improving effects, has been widely used as a therapeutic agent in traditional medicine.


Codonopsis lanceolata Water Extract Increases Hepatic Insulin Sensitivity in Rats with Experimentally-Induced Type 2 Diabetes.[Pubmed: 29104217]


None


The memory ameliorating effects of DHP1402, an herbal mixture, on cholinergic blockade-induced cognitive dysfunction in mice.[Pubmed: 28917975]


The seeds of Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F Chow (Rhamnaceae) and the roots of Codonopsis lanceolata (Siedbold & Zucc.) Benth. & Hook. f ex Trautv. (Campanulaceae), contained in the DHP1402, have long been used for treating dementia or hypomnesia as folk medicine.


Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene.[Pubmed: 28660450]


None


Codonopsis lanceolata polysaccharide CLPS inhibits melanoma metastasis via regulating integrin signaling.[Pubmed: 28527988]


None


Application of a solvent-free solid injection technique coupled with GC-MS for discrimination between the secondary metabolites of wild and cultivated South Korean medicinal foods.[Pubmed: 27859496]


Solvent-free solid injection was applied to differentiate between wild and cultivated South Korean medicinal foods, including dureup (Aralia elata), deodeok (Codonopsis lanceolata) and doraji (Platycodon grandiflorus). A number of compounds were identified in wild and cultivated dureup (53 and 46), deodeok (47 and 51) and doraji (43 and 38). Secondary metabolites, including butanal,2-methyl-, β-caryophyllene, neoclovene, α-humulene, γ-curcumene, β-bisabolene, and phytol, were identified in dureup with significantly (P < 0.05) different amounts between both types. In deodeok, squalene and other main components such as acetic acid, methyl ester, furan-methyl-furfural, 2-furan-methanol, and 5-methyl-furfural, were statistically different between the two types. Doraji has significantly different compounds such as furfural, 5-methyl-furfural, 2-methoxy-phenol, 2-methoxy-4-(1-propenyl)-phenol, and 1-(4-hydroxy-3-methoxyphenyl)-2-propanone. Although we failed to confirm the key compounds, a new compound, namely desaspidinol, was synthesized for the first time and its retention index determined under the experimental conditions. This solventless, easy technique can be used as a simple way to discriminate between wild and cultivated types of medicinal plants via identification of volatile markers or specific fingerprints.


Steamed and Fermented Ethanolic Extract from Codonopsis lanceolata Attenuates Amyloid-β-Induced Memory Impairment in Mice.[Pubmed: 27313637]


Codonopsis lanceolata (C. lanceolata) is a traditional medicinal plant used for the treatment of certain inflammatory diseases such as asthma, tonsillitis, and pharyngitis. We evaluated whether steamed and fermented C. lanceolata (SFC) extract improves amyloid-β- (Aβ-) induced learning and memory impairment in mice. The Morris water maze and passive avoidance tests were used to evaluate the effect of SFC extract. Moreover, we investigated acetylcholinesterase (AChE) activity and brain-derived neurotrophic factor (BDNF), cyclic AMP response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK) signaling in the hippocampus of mice to determine a possible mechanism for the cognitive-enhancing effect. Saponin compounds in SFC were identified by Ultra Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS). SFC extract ameliorated amyloid-β-induced memory impairment in the Morris water maze and passive avoidance tests. SFC extract inhibited AChE activity and also significantly increased the level of CREB phosphorylation, BDNF expression, and ERK activation in hippocampal tissue of amyloid-β-treated mice. Lancemasides A, B, C, D, E, and G and foetidissimoside A compounds present in SFC were determined by UPLC-Q-TOF-MS. These results indicate that SFC extract improves Aβ-induced memory deficits and that AChE inhibition and CREB/BDNF/ERK expression is important for the effect of the SFC extract. In addition, lancemaside A specifically may be responsible for efficacious effect of SFC.


Codonopsis lanceolata: A Review of Its Therapeutic Potentials.[Pubmed: 26931614]


Codonopsis lanceolata (Campanulaceae) is dicotyledonous herbaceous perennial plant, predominantly found in Central, East, and South Asia. This plant has been widely used in traditional medicine and is considered to have medicinal properties to treat diseases and symptoms such as bronchitis, coughs, spasm, psychoneurosis, cancer, obesity, hyperlipidemia, edema, hepatitis, colitis, and lung injury. C. lanceolata contains many biologically active compounds, including polyphenols, saponins, tannins, triterpene, alkaloids, and steroids, which contribute to its numerous pharmacological activities. Through systematic studies, the pharmacological actions of these compounds have been revealed. Therapeutic potentialities of C. lanceolata and its previously reported molecular mechanisms are described in this review.