Corydalis impatiens
Corydalis impatiens
1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.
Natural products/compounds from Corydalis impatiens
- Cat.No. Product Name CAS Number COA
- BCN1238 (+)-Bicuculline485-49-4 Instructions
Cavidine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via NF-κB Signaling Pathway in vivo and in vitro.[Pubmed: 28365871]
Acute lung injury (ALI) is characterized by widespread inflammation in the lungs and alveolar-capillary destruction, causing high morbidity and mortality. Cavidine, isolated from Corydalis impatiens, have been exhibited to have potent anti-inflammatory effects in previous studies. The purpose of this study was to evaluate the protective effect of cavidine on lipopolysaccharide (LPS)-induced ALI and to enunciate the underlying in vivo and in vitro mechanisms. Mice were intraperitoneally administrated with cavidine (1, 3, or 10 mg/kg) at 1 and 12 h, prior to the induction of ALI by intranasal administration of LPS (30 mg/kg). Blood samples, lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested after LPS challenge. Furthermore, we used LPS-induced lung epithelial cells A549 to examine the mechanism of cavidine to lung injury. The results showed that pretreatment with cavidine significantly decreased lung wet-to-dry weight (W/D) ratio, reduced pro-inflammatory cytokine levels including TNF-α and IL-6 in BALF and serum from LPS-stimulated mice, and attenuated lung histopathological changes. In addition, western blot results showed that cavidine inhibited the phosphorylation of nuclear factor-kappaB (NF-κB) p65 and IκBα induced by LPS. In conclusion, our results demonstrate that cavidine protects against LPS-induced acute lung injury in mice via inhibiting of pro-inflammatory cytokine TNF-α and IL-6 production and NF-κB signaling pathway activation. Taken together, cavidine may be useful for the prevention and treatment of pulmonary inflammatory diseases, such as ALI.
Anti-ulcerogenic effect of cavidine against ethanol-induced acute gastric ulcer in mice and possible underlying mechanism.[Pubmed: 27380619]
Cavidine, a major alkaloid compound isolated from Corydalis impatiens, has various pharmacological effects but its effect on gastric ulcer has not been previously explored. The current study aimed to investigate the possible anti-ulcerogenic potential of cavidine in the model of ethanol-induced gastric ulcer. Mice received cavidine (1, 5 or 10mg/kg, ig), cimetidine (CMD, 100mg/kg, ig) or vehicle at 12h and 1h before absolute ethanol administration (0.5mL/100g), and animals were euthanized 3h after ethanol ingestion. Gross and histological gastric lesions, biochemical, immunological and Western blot parameters were taken into consideration. The results showed that ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas cavidine pre-treatment reduced the gastric injuries. Cavidine pre-treatment also ameliorated the contents of malonaldehyde (MDA) and myeloperoxidase (MPO) activity, and increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and prostaglandin E2 (PGE2), relative to the model group. Also cavidine was able to decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), inhibit the up-regulation of cyclo-oxygenase-2 (COX-2) expression and activation of Nuclear factor-kappa B (NF-κB) pathway. Taken together, these results indicated that cavidine exerts a gastroprotective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, reduction of oxidative stress, suppression of NF-κB expression and subsequent reduced COX-2 and pro-inflammatory cytokines.
Anti-inflammatory effects of cavidine in vitro and in vivo, a selective COX-2 inhibitor in LPS-induced peritoneal macrophages of mouse.[Pubmed: 25373916]
Cavidine is an isoquinoline alkaloid which is isolated from Corydalis impatiens. In traditional Tibetan herb, C. impatiens has been widely used for treatment of skin injuries, hepatitis, cholecystitis, and scabies. The present study aimed to evaluate its anti-inflammatory effect and investigate the mechanisms underlying this anti-inflammatory action. We used different inflammation model animals and lipopolysaccharide (LPS)-induced murine peritoneal macrophages to examine the anti-inflammatory function of cavidine. Results indicated pretreatment with cavidine (i.p.) decreased xylene-induced ear edema, formaldehyde-induced paw edema, leukocyte number, and the level of nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-alpha (TNF-α) in acetic acid-induced peritonitis in mice. The data also demonstrated that cavidine significantly inhibited LPS-induced TNF-α, interleukin-6 (IL-6), and NO production in peritoneal macrophages. Moreover, cavidine regulated the expression of cyclooxygenase-2 (COX-2) instead of cyclooxygenase-1 (COX-1) at protein levels. These results suggested that cavidine is a selective COX-2 inhibitor which possesses an anti-inflammatory activity.
Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway.[Pubmed: 23810685]
The extracts or constituents from Corydalis impatiens are known to have many pharmacological activities. Tetrahydrocoptisine (THC), a protoberberine compound from Corydalis impatiens, was found to possess a potent anti-inflammatory effect in different acute or chronic inflammation model animals. Pretreatment with THC (i.p.) inhibited the paw and ear edema in the carrageenan-induced paw edema assay and xylene-induced ear edema assay, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, THC significantly inhibited serum tumor necrosis factor-alpha (TNF-α) release in mice. To clarify its possible molecular mechanisms underlying this anti-inflammatory effect, we investigated the effect of THC on LPS-induced responses in peritoneal macrophages. Our data demonstrated that THC significantly inhibited LPS-induced TNF-α, interleukin-6(IL-6) and nitric oxide (NO) production. THC inhibited the production of TNF-α and IL-6 by down-regulating LPS-induced IL-6 and TNF-α mRNA expression. Furthermore, it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) as well as the expression of nuclear factor kappa B(NF-κB), in a concentration-dependent manner. Taken together, our data suggest that THC is an active anti-inflammatory constituent by inhibition of TNF-α, IL-6 and NO production possibly via down-regulation of NF-κB activation, phospho-ERK1/2 and phospho-p38MAPK signal pathways.
Simultaneous quantification of 11 isoquinoline alkaloids in Corydalis impatiens (Pall.) Fisch by HPLC.[Pubmed: 23610009]
Isoquinoline alkaloids are the primary active ingredients of Corydalis, but an analytical method for quality assessment of the active ingredients in Corydalis impatiens (Pall). Fisch has not been reported. A new, simple, and multiple-component quantification method was developed for the simultaneous quantification of 11 isoquinoline alkaloids including capnoidine, chelianthifoline, bicuculline, protopine, isoapocavidine, apocavidine, cavidine, tetrahydroepiberberine, ochotensimine, tetrahydrocoptisine, and tetrahydrocorysamine in C. impatiens. Separation of the isoquinoline alkaloids was performed on a RP C18 column (150 × 4.6 mm, 5 μm) with potassium dihydrogen phosphate buffer (pH 2.5, adjusted by phosphoric acid)/acetonitrile (53:47, v/v) containing 0.3% sodium dodecyl sulfonate. The flow rate and detection wavelength were set at 1 mL/min and 295 nm, respectively. Full validation of the assay was carried out including linearity, precision, accuracy, stability, LOD, and limit of quantitation. All calibration curves showed a good linear relationship (r > 0.999) in test range. The results demonstrated that the developed method was reliable, rapid, and specific. Six batches of C. impatiens samples from different sources were determined using the established method. The contents of alkaloids ranged from 11.68 to 351.83 μg/g. This method can be applied for quality evaluation and control of C. impatiens. Eleven isoquinoline alkaloids were first reported on simultaneous determination with HPLC.
[Studies on the alkaloids from roots of Corydalis impatiens].[Pubmed: 20575411]
To study the alkaloids from Corydalis impatiens.