Home >>Botany >> Eleutherococcus trifoliatus

Eleutherococcus trifoliatus

Eleutherococcus trifoliatus

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Eleutherococcus trifoliatus

  1. Cat.No. Product Name CAS Number COA
  2. BCN4600 Kaurenoic acid6730-83-2 Instructions

References

Anti-proliferation effect on human breast cancer cells via inhibition of pRb phosphorylation by taiwanin E isolated from Eleutherococcus trifoliatus.[Pubmed: 25918798]


Eleutherococcus trifoliatus has been used as a folk medicine since ancient times, especially as refreshing qi medicines. In our current study, taiwanin E, which possesses strong cytotoxicity, was isolated from the branches of E. trifoliatus by using a bioactivity guided fractionation procedure. Taiwanin E presented a potent anti-proliferation activity on the growth of a human breast adenocarcinoma cell line (MCF-7), with an IC50 value for cytotoxicity of 1.47 μM. Cell cycle analysis revealed that the proportion of cells in the G0/G1 phase increased in a dose-dependent manner (from 79.4% to 90.2%) after 48 h exposure to taiwanin E at a dosage range from 0.5 to 4μM. After treatment with taiwanin E, phosphorylation of retinoblastoma protein (pRb) in MCF-7 cells was inhibited, accompanied by a decrease in the levels of cyclin D1, cyclin D3 and cyclin-dependent kinase 4 (cdk4) and cdk6; in addition, there was an increase in the expression of cyclin-dependent kinase inhibitors p21(WAF-1/Cip) and p27(Kip1). The results suggest that taiwanin E inhibits cell cycle progression of MCF-7 at the G0/G1 transition.