Home >>Botany >> Fritillaria thunbergii

Fritillaria thunbergii

Fritillaria thunbergii

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Fritillaria thunbergii

  1. Cat.No. Product Name CAS Number COA
  2. BCN1095 Peiminine18059-10-4 Instructions
  3. BCN1094 Peimine23496-41-5 Instructions
  4. BCN1206 Palmitic acid57-10-3 Instructions

References

Metabolic profiling investigation of Fritillaria thunbergii Miq. by gas chromatography-mass spectrometry.[Pubmed: 29389572]


Thunberg fritillary bulb (the dry bulbs of Fritillaria thunbergii Miq.), a traditional Chinese Medicine, is widely applied as an expectorant and antitussive. In this investigation, the primary metabolites of bulbs, flowers, leaves, and stems of F. thunbergii were analyzed by gas chromatography-mass spectrometry. Principal component analysis, partial least squares-discriminate analysis, orthogonal projection to latent structures-discriminate analysis, and heat map analysis showed that there were dissimilar metabolites, and a negative correlation between amino acids and saccharides in different analytes. Furthermore, carbodiimide, tryptophan, glucose-6-phosphate, xylose, 2-piperidinecarboxylic acid, monoamidomalonic acid, phenylalanine, and histidine were found to play an important role in the plant metabolism net of F. thunbergii.


Determination and Visualization of Peimine and Peiminine Content in Fritillaria thunbergii Bulbi Treated by Sulfur Fumigation Using Hyperspectral Imaging with Chemometrics.[Pubmed: 28832506]


None


Peiminine inhibits colorectal cancer cell proliferation by inducing apoptosis and autophagy and modulating key metabolic pathways.[Pubmed: 28496003]


Peiminine, a compound extracted from the bulbs of Fritillaria thunbergii and traditionally used as a medication in China and other Asian countries, was reported to inhibit colorectal cancer cell proliferation and tumor growth by inducing autophagic cell death. However, its mechanism of anticancer action is not well understood, especially at the metabolic level, which was thought to primarily account for peiminine's efficacy against cancer. Using an established metabolomic profiling platform combining ultra-performance liquid chromatography/tandem mass spectrometry with gas chromatography/mass spectrometry, we identified metabolic alterations in colorectal cancer cell line HCT-116 after peiminine treatment. Among the identified 236 metabolites, the levels of 57 of them were significantly (p < 0.05) different between peiminine-treated and -untreated cells in which 45 metabolites were increased and the other 12 metabolites were decreased. Several of the affected metabolites, including glucose, glutamine, oleate (18:1n9), and lignocerate (24:0), may be involved in regulation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway and in the oxidative stress response upon peiminine exposure. Peiminine predominantly modulated the pathways responsible for metabolism of amino acids, carbohydrates, and lipids. Collectively, these results provide new insights into the mechanisms by which peiminine modulates metabolic pathways to inhibit colorectal cancer cell growth, supporting further exploration of peiminine as a potential new strategy for treating colorectal cancer.


Optimization of Supercritical Fluid Extraction of Total Alkaloids, Peimisine, Peimine and Peiminine from the Bulb of Fritillaria thunbergii Miq, and Evaluation of Antioxidant Activities of the Extracts.[Pubmed: 28773648]


None


[Identification of alkaloids and flavonoids in all parts of Fritillaria thunbergii using LC-LTQ-Orbitrap MSn].[Pubmed: 28901111]


Alkaloids and flavonoids in flowers, flower buds, stems, leaves, and bulbs of Fritillaria thunbergii were identified by LC-LTQ-Orbitrap MSn.Alkaloids were identified by ACQUITY UPLC BEH C₁₈(2.1 mm×50 mm, 1.7 μm ) chromatographic column with a mobile phase of 10 mmol•L⁻¹ ammonium formate-acetonitrile and gradient elution in positive MS scan mode.Meanwhile, flavonoids were analyzed by Agilent-Zorbax SB C₁₈ (4.6 mm×250 mm, 5 μm) chromatographic column with a mobile phase of 0.2% acetic acid-acetonitrile and gradient elution in negative MS scan mode.Combined with literature reports, chemical constituents were identified and determined by accurate molecular weights and fragment ion peaks in the ESI-MS/MS spectra based on high resolution mass spectrometer.In all parts of F.thunbergii, 37 alkaloids including 7 alkaloids (zhebeininoside, peimisine, peimine, peiminine, ebeiedinone/puqiedinone, ebeiedine/ puqiedine, peimisine-N-oxide) were simultaneously analyzed.Moreover, 16 flavonoids including quercetin, kaempferol and their glycosides were identified.The results indicated that the aerial parts had the similar alkaloids as the bulbs on the whole.Meanwhile, it had a series of flavonoids undetected in the bulbs.Our results provided the scientific basis for the development and utilization of aerial parts of F.thunbergii.