Hypericum longistylum
Hypericum longistylum
1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.
Natural products/compounds from Hypericum longistylum
- Cat.No. Product Name CAS Number COA
Extractive from Hypericum ascyron L promotes serotonergic neuronal differentiation in vitro.[Pubmed: 30015171]
Plant natural products have many different biological activities but the precise mechanisms underlying these activities remain largely unknown. Hypericum longistylum has long been recorded in Chinese medicine as a cure for depression and related disorders, but how it repairs neural lineages has not been addressed.
Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B.[Pubmed: 28946049]
Protein tyrosine phosphatase 1B (PTP1B) has been regarded asa target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A-D (1-4) from the aerial parts of Hypericum longistylum. The structures of 1-4 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 1-4 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes.