Home >>Botany >> Kummerowia striata

Kummerowia striata

Kummerowia striata

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Kummerowia striata

  1. Cat.No. Product Name CAS Number COA
  2. BCN4985 Luteolin-6-C-glucoside4261-42-1 Instructions
  3. BCN5658 Apigenin520-36-5 Instructions

References

An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon.[Pubmed: 24817325]


Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1-3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts.


Arbuscular mycorrhizal fungal mediation of plant-plant interactions in a marshland plant community.[Pubmed: 24693254]


Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.


Soil characteristics and heavy metal accumulation by native plants in a Mn mining area of Guangxi, South China.[Pubmed: 24271720]


Revegetation and ecological restoration of a Mn mineland are important concerns in southern China. To determine the major constraints for revegetation and select suitable plants for phytorestoration, pedological and botanical characteristics of a Mn mine in Guangxi, southern China were investigated. All the soils were characterized by low pH and low nitrogen and phosphorus levels except for the control soil, suggesting that soil acidity and poor nutrition were disadvantageous to plant growth. In general, the studied mine soils had normal organic matter (OM) and cation exchange capacity (CEC). However, OM (8.9 g/kg) and CEC (7.15 cmol/kg) were very low in the soils from tailing dumps. The sandy texture and nutrient deficiency made it difficult to establish vegetation on tailing dumps. Mn and Cd concentrations in all soils and Cr and Zn concentrations in three soils exceeded the pollution threshold. Soil Mn and Cd were above phytotoxic levels, indicating that they were considered to be the major constraints for phytorestoration. A botanical survey of the mineland showed that 13 plant species grew on the mineland without obvious toxicity symptoms. High Mn and Cd concentrations have been found in the aerial parts of Polygonum pubescens, Celosia argentea, Camellia oleifera, and Solanum nigrum, which would be interesting for soil phytoremediation. Miscanthus floridulus, Erigeron acer, Eleusina indica, and Kummerowia striata showed high resistance to the heavy metal and harsh condition of the soils. These species could be well suited to restore local degraded land in a phytostabilization strategy.


Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil.[Pubmed: 21520815]


A mesocosm experiment was conducted to investigate whether plant coexistence affects cadmium (Cd) uptake by plant in contaminated soil. Tobacco (Nicotiana tabacum L. var. K326) and Japanese clover (Kummerowia striata (Thunb.) Schindl.) were used. Cadmium was applied as 3CdSO4 x 8H2O in solution at three levels (0, 1, and 3 mg/kg soil) to simulate an unpolluted soil and soils that were slightly and moderately polluted with Cd. Tobacco (crop), Japanese clover (non-crop), and their combination were grown under each Cd treatment. Compared to monoculture and under all Cd treatments, co-planting with Japanese clover did not affect tobacco biomass but significantly increased Cd concentration in all tobacco tissues and enhanced Cd accumulation in tobacco shoots and roots. Compared to monoculture, co-planting reduced soil pH and increased Cd bioavailability. For tobacco, co-planting with Japanese clover increased the Cd bioconcentration factor (BCF) in Cd contaminated soil. Japanese clover also accumulated substantial quantities of Cd in shoots and roots. Thus, total Cd uptake by the plants was much greater with co-planting than with monoculture. The results suggested that phytoextraction can be effectively increased through tobacco co-planting with Japanese clover in mildly Cd-contaminated soil.


Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata.[Pubmed: 21421926]


During a study of the diversity and phylogeny of rhizobia in the root nodules of Kummerowia striata grown in north-western China, four strains were classified in the genus Rhizobium on the basis of their 16S rRNA gene sequences. The 16S rRNA gene sequences of three of these strains were identical and that of the other strain, which was the only one isolated in Yangling, differed from the others by just 1 bp. The16S rRNA gene sequences of the four strains showed a mean similarity of 99.3 % with the most closely related, recognized species, Rhizobium vitis. The corresponding recA and glnA gene sequences showed similarities with established species of Rhizobium of less than 86.5 % and less than 89.6 %, respectively. These low similarities indicated that the four strains represented a novel species of the genus Rhizobium. The strains were also found to be distinguishable from the closest related, established species (R. vitis) by rep-PCR DNA fingerprinting, analysis of cellular fatty acid profiles and from the results of a series of phenotypic tests. The level of DNA-DNA relatedness between the representative strain CCNWSX 0483(T) and Rhizobium vitis IAM 14140(T) was only 40.13 %. Therefore, a novel species, Rhizobium taibaishanense sp. nov., is proposed, with strain CCNWSX 0483(T) ( = ACCC 14971(T) = HAMBI 3214(T)) as the type strain. In nodulation and pathogenicity tests, none of the four strains of Rhizobium taibaishanense sp. nov. was able to induce any nodule or tumour formation on plants. As no amplicons were detected when DNA from the strains was run in PCR with primers for the detection of nodA, nifH and virC gene sequences, the strains probably do not carry sym or vir genes.


Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.[Pubmed: 20808770]


Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.


Anti-inflammatory effects of ethanol extract from Kummerowia striata (Thunb.) Schindl on lps-stimulated RAW 264.7 cell.[Pubmed: 18427964]


Kummerowia striata (Thunb.) Schindl has long been used as a fork herb in inflammation-related therapy. This study was undertaken to determine the anti-inflammatory effect of the plant. High performance liquid chromatography (HPLC) was used for evaluating the extract. While dexamethasone (DM) was used as a positive control, the effects of ethanol extract on the production of IL-1beta, IL-6, NO, COX-2 and TNF-alpha, the expression of iNOS mRNA, TNF-alpha mRNA, COX-2 mRNA, protein production of COX-2 and HO-1, NF-kappaB and I-kappaB of LPS-stimulated RAW 264.7 cells were studied by sandwich ELISA, real-time PCR, Western blot analysis and immunocytochemistry assay respectively. The results showed that K. striata (Thunb.) Schindl had a good anti-inflammatory effect on LPS-stimulated RAW264.7 cell. On one hand, it could significantly inhibit the production of IL-1beta, IL-6, NO, TNF-alpha, COX-2 in LPS-stimulated cell than that of single LPS stimulated cell (p < 0.01 or p < 0.05). On the other hand, it could increase the production of IL-10 and HO-1 than that of single LPS intervention cell (p < 0.01 or p < 0.05). Furthermore, the extract also could inhibit the production of NF-kappaB and I-kappaB compared to single LPS stimulated cell. In a word, it suggested that the anti-inflammatory actions of K. striata (Thunb.) Schindl ethanol extract might be due to the down-regulation of IL-1beta, IL-6, NO, TNF-alpha and COX-2 via the suppression of NF-kappaB activation and conversation of I-kappaB production, and another pathway was up regulating the production of IL-10 and HO-1.


Diverse rhizobia that nodulate two species of Kummerowia in China.[Pubmed: 17673977]


A total of 63 bacterial strains were isolated from root nodules of Kummerowia striata and K. stipulacea grown in different geographic regions of China. These bacteria could be divided into fast-growing (FG) rhizobia and slow-growing (SG) rhizobia according to their growth rate. Genetic diversity and taxonomic relationships among these rhizobia were revealed by PCR-based 16 S rDNA RFLP and sequencing, 16 S-IGS RFLP, SDS-PAGE of whole cell soluble proteins, BOX-PCR and symbiotic gene (nifH/nodC) analyses. The symbiotic FG strains were mainly isolated from temperate regions and they were identified as four genomic species in Rhizobium and Sinorhizobium meliloti based on the consensus of grouping results. The SG strains were classified as five genomic species within Bradyrhizobium and they were mainly isolated fron the subtropic and tropical regions. The phylogenetic analyses of nifH and nodC genes showed relationships similar to that of 16 S rDNA but the symbiotic genes of Bradyrhizobium strains isolated from Kummerowia were distinct from those isolated from Arachis and soybean. These results offered evidence for rhizobial biogeography and demonstrated that the Kummerowia-nodulating ability might have evolved independently in different regions in association with distinctive genomic species of rhizobia.


Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil.[Pubmed: 16151233]


The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha(-1) (dry weight). Tall fescue (Festuca arundinacea Schreb.), orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum L.), caucasian bluestem (Bothriochloa caucasia L.), reed canarygrass (Phalaris arundinacea L.), ladino clover (Trifolium repens L.), birdsfoot trefoil (Lotus corniculatus L.), crownvetch (Coronilla varia L.), alfalfa (Medicago sativa L.), common sericea lespedeza and AULotan sericea lespedeza (Lespedeza cuneata L.), tall fescue-ladino clover, tall fescue-alfalfa, orchardgrass-birdsfoot trefoil, switchgrass-AULotan, and an herbaceous species mix intended for planting on reforested sites consisting of foxtail millet [Setaria italica (L.) Beauv.], perennial ryegrass (Lolium perenne L.), redtop (Agrostis alba L.), kobe lespedeza (Kummerowia striata L.), appalow lespedeza (Lespedeza cuneata L.), and birdsfoot trefoil were established between spring 1990 and 1991. Vegetative biomass and/or persistence were assessed in 1996, 1997, 1998, 2000, 2001, and 2002. The high rate of biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.


Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.[Pubmed: 15963805]


A sand culture experiment was conducted to investigate whether mycorrhizal colonization and mycorrhizal fungal vesicular numbers were influenced by metal lead, and whether mycorrhizae enhance host plants tolerance to metal lead. Metal lead was applied as Pb(NO3)2 in solution at three levels (0, 300 and 600 mg kg(-1) sand). Five mycorrhizal host plant species, Kummerowia striata (Thunb.) Schindl, Ixeris denticulate L., Lolium perenne L., Trifolium repens L. and Echinochloa crusgalli var. mitis were used to examine Pb-mycorrhizal interactions. The arbuscular mycorrhizal inoculum consisted of mixed spores of mycorrhizal fungal species directly isolated from orchard soil. Compared to the untreated control, both Pb concentrations reduced mycorrhizal colonization by 3.8-70.4%. Numbers of AM fungal vesicles increased by 13.2-51.5% in 300 mg Pb kg(-1) sand but decreased by 9.4-50.9% in 600 mg Pb kg(-1) sand. Mycorrhizae significantly enhanced Pb accumulation both in shoot by 10.2-85.5% and in root by 9.3-118.4%. Mycorrhizae also enhanced shoot biomass and shoot P concentration under both Pb concentrations. Root/shoot ratios of Pb concentration were higher in highly mycorrhizal plant species (K.striata, I. denticulate, and E. crusgalli var. mitis) than that in poorly mycorrhizal ones (L. perenne and T. repens,). Mycorrhizal inoculation increased the root/shoot ratio of Pb concentration of highly mycorrhizal plant species by 7.6-57.2% but did not affect the poorly mycorrhizal ones. In the treatments with 300 Pb mg kg(-1) sand, plant species with higher vesicular numbers tended to show higher root/shoot ratios of the Pb concentration. We suggest that under an elevated Pb condition, mycorrhizae could promote plant growth by increasing P uptake and mitigate Pb toxicity by sequestrating more Pb in roots.