Pinus elliottii
Pinus elliottii
1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.
Natural products/compounds from Pinus elliottii
- Cat.No. Product Name CAS Number COA
Pathogenicity of Ganoderma Species on Landscape Trees in the Southeastern United States.[Pubmed: 30088787]
The genus Ganoderma contains species that are associated with dead and declining host trees. Many species have been described as pathogens in literature, because anecdotally, the presence of fruiting bodies on living trees has been widely associated with a general decline in tree health. Few studies have investigated the pathogenicity of Ganoderma species on landscape trees in the southeastern U.S. Pathogenicity tests were used to determine the pathogenicity of G. curtisii, G. meredithiae, G. sessile, and G. zonatum on young, healthy landscape trees (Pinus elliottii var. elliottii, P. taeda, Quercus shumardii, Q. virginiana, and Butia odorata) common to the southeastern U.S. Inoculations were made by drilling into the sapwood of the lower bole and inserting wooden dowels that were infested with each Ganoderma species. In two field experiments, 11 to 12 months post inoculation, trees had no visual, external symptoms of disease. There were differences in the extent of internal xylem discoloration near the site of inoculation in comparison with the mock-inoculated control in experiment 1, but there were no differences relative to the control in experiment 2. In both experiments, G. sessile was the only species that was successfully reisolated from the pine and oak hosts. Although disease symptoms were not obvious, the reisolation of G. sessile outside the inoculation point was a significant finding, and suggests that this species was capable of infecting healthy sapwood. G. sessile constitutively produces chlamydospores within its vegetative mycelium, which may contribute to its persistence in the discolored sapwood. These data suggest that the Ganoderma species tested, following trunk wounding, are not pathogens of young, actively growing landscape trees that only possess sapwood. The establishment of these fungi using alternative infection courts (e.g., roots) and their interactions in older living trees (e.g., trees with heartwood) needs investigation to better understand their effects on tree health.
Dehydroabietic acid isolated from Pinus elliottii exerts in vitro antileishmanial action by pro-oxidant effect, inducing ROS production in promastigote and downregulating Nrf2/ferritin expression in amastigote forms of Leishmania amazonensis.[Pubmed: 29802873]
None
Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations.[Pubmed: 29512162]
Fine roots of woody plants comprise multiple root orders, which can be functionally partitioned into two pools: absorptive fine roots (AFRs, orders 1, 2) and transport fine roots (TFRs, orders 3-5). However, the function-based fine-root dynamics and especially their responses to increased nitrogen (N) availability remain unclear. We explored dynamic responses of both AFRs and TFRs of Pinus elliottii to N addition in subtropical China based on a 4-yr minirhizotron experiment and a two-stage - early (0.5 yr) vs late (4 yr) - decomposition experiment. N addition increased the production, mortality, and turnover of AFRs but not TFRs. High rates of N persistently inhibited AFR decomposition but affected TFR decomposition differentially at the early (no effect) and late (negative effect) stages. The increased production of AFRs was driven by N-induced decrease in foliar and soil phosphorus (P) concentrations. The decreased decomposition of AFRs might be due to the increased acid-unhydrolyzable residues in decomposing roots. AFRs are the resource-acquiring module, the increased carbon allocation to AFRs may represent a P-acquiring strategy when N no longer limits growth of P. elliottii. Our results suggest that AFRs and TFRs respond differently to N deposition, both in terms of production, mortality, and turnover and in terms of decomposition.
Identification of caleosin and oleosin in oil bodies of pine pollen.[Pubmed: 27889638]
Unique proteins including steroleosin, caleosin, oleosin-L, and oleosin-G have been identified in seed oil bodies of pine (Pinus massoniana). In this study, mature pollen grains with wing-like bladders were collected from pine (Pinus elliottii). Ultrastructural studies showed that oil bodies were present in pollen grains, but not the attached bladders, and the presence of oil bodies was further confirmed by fluorescent staining with BODIPY 493/503. Stable oil bodies were successfully purified from pine pollen grains, and analyzed to be mainly composed of triacylglycerols. Putative oleosin and caleosin in pine pollen oil bodies were detected by immunoassaying with antibodies against sesame seed caleosin and lily pollen oleosin. Complete cDNA fragments encoding these two pollen oil-body proteins were obtained by PCR cloning. Sequence alignment showed that pine pollen caleosin (27 kDa) was highly homologous to pine seed caleosin (28 kDa) except for the lack of an appendix of eight residues at the C-terminus in accord with the 1 kDa difference in their molecular masses. Pine pollen oleosin (15 kDa) was highly homologous to pine seed oleosin-G (14 kDa) except for an insertion of eight residues at the N-terminus in accord with the 1 kDa difference in their molecular masses.