Home >>Botany >> Piper betle

Piper betle

Piper betle

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Piper betle

  1. Cat.No. Product Name CAS Number COA
  2. BCN1018 Piperine94-62-2 Instructions

References

Effects of Piper betle fractionated extracts on inhibition of Streptococcus mutans and Streptococcus intermedius.[Pubmed: 29998994]


The overgrowth of certain strains of normal flora in oral cavity can cause many kinds of oral infections or diseases such as carries, periodontitis, and gingivitis. Prevention and treatment of these diseases are usually achieved by chemical antiseptics. However, these chemicals are found as negative impacts of human health hazards and accession of microbial resistance. The present study explores the potential of Piper betle extracts on inhibition of two oral pathogenic bacteria; Streptococcus mutans DMST 41283 and Streptococcus intermedius DMST 42700. P. betle demonstrated significantly higher inhibitory activity against both pathogenic strains than Acacia catechu, Camellia sinensis, Coccinia grandis, Solanum indicum, and Streblus asper. Among fractionated extracts of P. betle from several solvents, the extract from ethyl acetate (Pb-EtOAc) possessed the widest inhibition zone of 11.0 ± 0.1 and 11.3 ± 0.4 mm against both bacterial strains, respectively. Pb-EtOAc showed the same minimum inhibitory concentration of 0.5 mg/mL against both strains, whereas its minimum bactericidal concentrations were 2.0 and 0.5 mg/mL against S. mutans and S. intermedius, respectively. HPLC analysis demonstrated that the major active compound of Pb-EtOAc was 4-allylpyrocatechol. It was found that the killing kinetics of Pb-EtOAc against both test strains were time and dose dependent. Scanning electron microscopy micrographs showed the morphological changes and depletion of the tested pathogens indicating cell destruction after exposure to Pb-EtOAc. It is confirmed that Pb-EtOAc is potentially effective against both oral pathogens and might be used as natural alternative agents in prevention and treatment of oral infections caused by oral pathogenic bacteria.


Allylpyrocatechol attenuates methotrexate-induced hepatotoxicity in a collagen-induced model of arthritis.[Pubmed: 29661087]


The cornerstone of treatment for rheumatoid arthritis is low dose methotrexate (MTX), but its use is limited by concerns regarding its potential for hepatotoxicity. Allylpyrocatechol (APC), a phytoconstituent sourced from leaves of Piper betle demonstrated antioxidant, anti-inflammatory, and antiarthritic properties. The present study aimed to evaluate the combined effect of APC and MTX on limiting progression of lipopolysaccharide accelerated collagen-induced arthritis, along with reduction of MTX-induced hepatic damage. A collagen-induced arthritis (CIA) model was established by immunising Sprague-Dawley rats with bovine collagen type II (CII) and lipopolysaccharide, followed by a booster dose of CII on day 15. Rats from days 11-27 were administered APC (20 mg/kg), methotrexate (1.5 mg/kg), or a combination of MTX and APC. The combinatorial therapy of APC and MTX significantly improved the parameters of arthritis as evident from the reduction in paw oedema and arthritic score and was endorsed by radiological and histopathological changes. This combination prevented the rise in levels of proinflammatory cytokines, tumour necrosis factor (TNF-α), and interleukin 6 (IL-6). Furthermore, unlike MTX-monotherapy, the APC-MTX combination decreased the associated cachexia, splenomegaly, and oxidative stress. Importantly, the hepatic damage mediated by MTX monotherapy was effectively attenuated by the inclusion of APC. Taken together, antioxidants such as APC when combined with MTX not only potentiated the antiarthritic effect but importantly alleviated the MTX-induced hepatic damage, thus endorsing its effectiveness in preventing progression of articular diseases such as rheumatoid arthritis.


Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division.[Pubmed: 29550331]


Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles.


Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts.[Pubmed: 29473847]


None


Potential of Piper betle extracts on inhibition of oral pathogens.[Pubmed: 29332888]


In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.


Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach.[Pubmed: 29288300]


Urinary tract infections are the utmost common bacterial infections caused by Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. These uropathogens resist the action of several antibiotics due to their ability to form biofilms. Most of these bacterial pathogens use the quorum sensing (QS) machinery to co-ordinate their cells and regulate several virulence factors and biofilm formation. On the other hand, the anti-quorum sensing (anti-QS) and antibiofilm potential of silver nanoparticles have been well reported against certain bacterial pathogens, but to the best of our knowledge, no report is available against the pathogenicity of uropathogens in particular S. marcescens and P. mirabilis. Therefore, the present study is primarily focused on the anti-QS and antibiofilm potential of Piper betle-based synthesized silver nanoparticles (PbAgNPs) against S. marcescens and P. mirabilis. Initially, the silver nanoparticles were synthesized by the aqueous extract of P. betle and characterized by UV-absorbance spectroscopy, XRD, FT-IR, SEM, TEM, and DLS. The synthesized silver nanoparticles were assessed for their anti-QS activity and the obtained results revealed that the PbAgNPs inhibited the QS-mediated virulence factors such as prodigiosin, protease, biofilm formation, exopolysaccharides and hydrophobicity productions in uropathogens. The gene expression analysis divulged the downregulation of fimA, fimC, flhD, and bsmB genes in S. marcescens and flhB, flhD, and rsbA genes in P. mirabilis, respectively. The in vivo Caenorhabditis elegans assays revealed the non-toxic and anti-adherence efficiency of PbAgNPs. Furthermore, the non-toxic effect of PbAgNPs was also confirmed through peripheral blood mononuclear cells and normal lung epithelial cells. Therefore, the contemporary study demonstrates the use of PbAgNPs as a possible alternative toward conventional antibiotics in controlling QS and biofilm-related uropathogen infections.