Home >>Botany >> Rhizophora stylosa

Rhizophora stylosa

Rhizophora stylosa

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Rhizophora stylosa

  1. Cat.No. Product Name CAS Number COA
  2. BCN2205 D-Mannitol69-65-8 Instructions

References

Integrating the ecophysiology and biochemical stress indicators into the paradigm of mangrove ecology and a rehabilitation blueprint.[Pubmed: 30102744]


The continuous degradation of mangrove habitats has encouraged governments and multi-lateral agencies to undertake rehabilitation initiatives to foster the recovery and biodiversity of these areas. However, some rehabilitation initiatives suffer high mortality because of incorrect species-site matching and failure to recognize the ecophysiology of mangrove species. This study investigated the effects of salinity, water depth and inundation on the growth, biochemical stress responses, and ecophysiology of Rhizophora stylosa in greenhouse conditions. Propagules were cultured in aquarium tanks and irrigated with low (0 ppt), moderate (20 ppt), and high (35 ppt) salinity treatments. In the first setup, the seedlings were cultured in aquarium tanks and arranged on the top of a platform at different elevations, subjecting the seedlings to flooding with low-water (3-5 cm), mid-water (10-13 cm) and high-water (30-33 cm) levels for ten months. In another setup, the seedlings were cultured for 15 months at the low-water level and subjected to inundation hydroperiods: semi-diurnal, diurnal and permanent inundation for one week. These microcosms simulated emerged and submerged conditions, mimicking intertidal inundation that seedlings would experience. The results showed that salinity significantly affected the early development of the cultured seedlings with higher growth rates and biomass at low and moderate salinity than those at high salinity. Levels of reactive oxygen species (ROS) and antioxidant activities (AOX) were significantly lower in the emerged condition than those in an inundated condition. Inundation imposed a higher-degree of stress than that of the salinity effect, with prolonged inundation caused sublethal damage (chlorotic leaves). Furthermore, inundation caused the reduction of photosynthetic pigments and fluorescence, dependent on salinity. Extrapolating the ecophysiology of R. stylosa, this species had low tolerance to inundation stress (high ROS and AOX, reduced pigments). Translating this low tolerance to field conditions, in the frequently inundated areas (i.e., seafront mangrove fringes) that are subjected to longer inundation at spring tides, this species may suffer from oxidative stress, stunted growth and consequently low survival.


Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea.[Pubmed: 29897911]


Mangrove endophytic fungi can produce impressive quantities of metabolites with promising antioxidant activities that may be useful to humans as novel physiological agents. In this study, we investigated the phylogenetic diversity and antioxidant potential of 46 fungal endophytes derived from the mangrove species Rhizophora stylosa and R. mucronata from the South China Sea. The fungal isolates were identified using a combination of morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS) sequences. Seventeen genera belonging to 8 taxonomic orders of Ascomycota were discovered, specifically, Botryosphaeriales, Capnodiales, Diaporthales, Eurotiales, Glomerellales, Hypocreales, Pleosporales, and Xylariales. The most abundant fungal orders included Xylariales (35.49%) and Diaporthales (27.61%), which were predominantly represented by the culturable species Pestalotiopsis sp. (34.54%) and Diaporthe sp. (18.62%). The stems showed more frequent colonization and species diversity than the roots, leaves, hypocotyls, and flower tissues of the host plant. The antioxidant activities of all the isolated fungal extracts on four different culture media were assessed using improved 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) methods. A relatively high proportion (84.8%) of the isolates displayed antioxidant capacity (%RSA > 50%). Further research also provided the first evidence that HQD-6 could produce flufuran as a significant radical scavenger with IC50 values of 34.85±1.56 and 9.75±0.58 μg/mL, respectively. Our findings suggest that the utilization of a biotope such as that of the endophytic fungal community thriving on the mangrove plants R. stylosa and R. mucronata may be suitable for use as a sustainable resource for natural antioxidants.


Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides.[Pubmed: 28847042]


Halotolerant fungus Cladosporium cladosporioides OUCMDZ-187 was isolated from the mangrove plant Rhizophora stylosa collected in Shankou, Guangxi Province of China. Three new fatty acid esters cladosporesters A-C (1-3) and 5 new fatty acids cladosporacids A-E (4-8) were isolated from the ethyl acetate extract of the fermentation broth of OUCMDZ-187 in a hypersaline (10% salt) medium. Their structures were elucidated by UV, IR, MS, specific rotation, and 1D and 2D NMR data.


Rhizovarins A-F, Indole-Diterpenes from the Mangrove-Derived Endophytic Fungus Mucor irregularis QEN-189.[Pubmed: 27462726]


Genome mining of the fungus Mucor irregularis (formerly known as Rhizomucor variabilis) revealed the presence of various gene clusters for secondary metabolite biosynthesis, including several terpene-based clusters. Investigation into the chemical diversity of M. irregularis QEN-189, an endophytic fungus isolated from the fresh inner tissue of the marine mangrove plant Rhizophora stylosa, resulted in the discovery of 20 structurally diverse indole-diterpenes including six new compounds, namely, rhizovarins A-F (1-6). Among them, compounds 1-3 represent the most complex members of the reported indole-diterpenes. The presence of an unusual acetal linked to a hemiketal (1) or a ketal (2 and 3) in an unprecedented 4,6,6,8,5,6,6,6,6-fused indole-diterpene ring system makes them chemically unique. Their structures and absolute configurations were elucidated by spectroscopic analysis, modified Mosher's method, and chemical calculations. Each of the isolated compounds was evaluated for antitumor activity against HL-60 and A-549 cell lines.


Mangrove succession enriches the sediment microbial community in South China.[Pubmed: 27265262]


Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.