Home >>Botany >> Swertia mussotii

Swertia mussotii

Swertia mussotii

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Swertia mussotii

  1. Cat.No. Product Name CAS Number COA
  2. BCN5535 Mangiferin4773-96-0 Instructions
  3. BCN2762 Swertisin6991-10-2 Instructions

References

Swertia mussotii extracts induce mitochondria-dependent apoptosis in gastric cancer cells.[Pubmed: 29803173]


None


[Application of remote sensing and GIS in study of suitability distribution of Swertia mussotii, a Tibetan medicine in Sichuan province].[Pubmed: 29318840]


Swertia mussotii is a kind of rare medicinal materials, the relevant researches are mainly concentrated on its medicinal efficacy and medicinal value till now, researches of adaptive distribution by applying remote sensing and GIS are relatively less. This study is to analyze the adaptive distribution of S.mussotii in Sichuan province by applying remote sensing and GIS technology, and provide scientific basis for the protection and development of wild resources, artificial cultivation and adjustment of Chinese medicine industrial distribution in Sichuan province. Based on literature review and ecological factors such as altitude, annual precipitation and annual average temperature, this study extracted ecological factors, overlay analysis in GIS, as well as combining GPS field validation data by means of remote sensing and GIS, discusses the adaptive distribution of SMF sin Sichuan province. ①The area of adaptive distribution of S. mussotii in Sichuan province is 1 543.749 km², mainly in Dege county, Ganzi county, Daofu county, Kangding county, Barkam, Jinchuan county, Xiaojin county, Danba county, Daocheng county, Xiangcheng county, Xinlong county, Aba county, Muli county and other counties and cities, accounts for about 7.25% in total area. ② Combining statistical information and field validation, this study found that S. mussotii adaptive distribution gained by remote sensing and GIS is in conformity with its actual distribution. The study shows that remote sensing and GIS technology are feasible to obtain the S. mussotii adaptive distribution, they can further be applied to studies on adaptive distributions of other rare Chinese medicinal herb.


Anti-inflammatory activity of compounds isolated from Swertia mussotii.[Pubmed: 29117731]


None


Antioxidant and Hepatoprotective Effect of Swertiamarin on Carbon Tetrachloride-Induced Hepatotoxicity via the Nrf2/HO-1 Pathway.[Pubmed: 28448964]


Swertiamarin (STM), the main bioactive component in Swertia mussotii Franch (Gentianaceae), has been shown to exert hepatoprotective effects on experimental liver injury. However, the effects and exact mechanisms of STM on carbon tetrachloride (CCl4) causing hepatotoxicity are still unknown. This study investigated the potential protective effects and mechanisms of STM on CCl4-induced liver injury in rats.


Large-Scale Preparation of a Specific Xanthone from Swertia mussotii and Evaluation of Its α-Glucosidase Inhibitory Activity.[Pubmed: 28334929]


Large-scale preparation and α-glucosidase inhibitory activity of a specific xanthone swertioside from Swertia mussotii were investigated in this study. Firstly, an efficient method was successfully established by liquid-liquid extraction, preparative high-performance liquid chromatography and sephadex LH-20 for large-scale preparation of swertioside. The recovery of swertioside reached 92.0%. Secondly, in vitro α-glucosidase inhibition experiment showed that swertioside had good inhibition close to acarbose. The study showed that swertioside had potential use as an anti-diabetic agent.


Chemical constituents from Swertia mussotii Franch. (Gentianaceae).[Pubmed: 28278647]


The chemical investigation of ethanolic extract from Swertia mussotii Franch. has resulted in the isolation of 11 compounds which were identified as Orcinol-β-D-glucoside (1), Shamimin (2), Mangiferin (3), Decussatin (4), Bellidifolin (5), Desmethylbellidifolin (6), Protocatechuic acid (7), 1,7-Dihydroxy-3,8-dimethoxyxanthone (8), 1,8-Dihydroxy-3,5-dimethoxyxanthone (9), 1-Hydroxy-3,5-dimethoxyxanthone (10), Telephioidin (11). The chemical structures of these compounds were identified by a combination of spectroscopic analysis and a comparison with those reported in literature. Among them, compounds 1, 2, 7 and 11 were isolated from the genus Swertia for the first time. Moreover, the chemotaxonomic significance of these compounds was summarised. The chemotaxonomic study suggests that there is a close chemotaxonomic relationship between S. mussotii and other species of Swertia, such as S. punicea, S. macrosperma, S. japonica, S. phragmitiphylla, S. chirayita, S. cordata and S. binchuanensis, with presence of compounds 3~6, 8~10. The xanthones and their glycosides may sever as important chemotaxonomic markers of Swertia genus.


Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii.[Pubmed: 28225035]


Swertia mussotii Franch. is an important traditional Tibetan medicinal plant with pharmacological properties effective in the treatment of various ailments including hepatitis. Secoiridoids are the major bioactive compounds in S. mussotii. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from the root, leaf, stem, and flower tissues, and performed de novo sequence assembly, yielding 98,613 unique transcripts with an N50 of 1,085 bp. Putative functions could be assigned to 35,029 transcripts (35.52%) based on BLAST searches against annotation databases including GO and KEGG. The expression profiles of 39 candidate transcripts encoding the key enzymes for secoiridoid biosynthesis were examined in different S. mussotii tissues, validated by qRT-PCR, and compared with the homologous genes from S. japonica, a species in the same family, unveiling the gene expression, regulation, and conservation of the pathway. The examination of the accumulated levels of three bioactive compounds, sweroside, swertiamarin, and gentiopicroside, revealed their considerable variations in different tissues, with no significant correlation with the expression profiles of key genes in the pathway, suggesting complex biological behaviours in the coordination of metabolite biosynthesis and accumulation. The genomic dataset and analyses presented here lay the foundation for further research on this important medicinal plant.


The Complete Chloroplast Genome Sequence of the Medicinal Plant Swertia mussotii Using the PacBio RS II Platform.[Pubmed: 27517885]


Swertia mussotii is an important medicinal plant that has great economic and medicinal value and is found on the Qinghai Tibetan Plateau. The complete chloroplast (cp) genome of S. mussotii is 153,431 bp in size, with a pair of inverted repeat (IR) regions of 25,761 bp each that separate an large single-copy (LSC) region of 83,567 bp and an a small single-copy (SSC) region of 18,342 bp. The S. mussotii cp genome encodes 84 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The identity, number, and GC content of S. mussotii cp genes were similar to those in the genomes of other Gentianales species. Via analysis of the repeat structure, 11 forward repeats, eight palindromic repeats, and one reverse repeat were detected in the S. mussotii cp genome. There are 45 SSRs in the S. mussotii cp genome, the majority of which are mononucleotides found in all other Gentianales species. An entire cp genome comparison study of S. mussotii and two other species in Gentianaceae was conducted. The complete cp genome sequence provides intragenic information for the cp genetic engineering of this medicinal plant.