Ciwujianoside C1CAS# 114906-73-9 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 114906-73-9 | SDF | Download SDF |
PubChem ID | 163950.0 | Appearance | Powder |
Formula | C52H82O21 | M.Wt | 1043.21 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | [(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl] (4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-6a,6b,9,9,12a-pentamethyl-2-methylidene-10-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate | ||
SMILES | CC1C(C(C(C(O1)OC2C(OC(C(C2O)O)OCC3C(C(C(C(O3)OC(=O)C45CCC(=C)CC4C6=CCC7C8(CCC(C(C8CCC7(C6(CC5)C)C)(C)C)OC9C(C(C(CO9)O)O)O)C)O)O)O)CO)O)O)O | ||
Standard InChIKey | HMQSPQLUUHPGBG-MCVRKTBJSA-N | ||
Standard InChI | InChI=1S/C52H82O21/c1-22-10-15-52(47(65)73-46-40(63)36(59)34(57)28(70-46)21-67-43-41(64)37(60)42(27(19-53)69-43)72-45-39(62)35(58)32(55)23(2)68-45)17-16-50(6)24(25(52)18-22)8-9-30-49(5)13-12-31(48(3,4)29(49)11-14-51(30,50)7)71-44-38(61)33(56)26(54)20-66-44/h8,23,25-46,53-64H,1,9-21H2,2-7H3/t23-,25-,26-,27+,28+,29-,30+,31-,32-,33-,34+,35+,36-,37+,38+,39+,40+,41+,42+,43+,44-,45-,46-,49-,50+,51+,52-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Ciwujianoside C1 Dilution Calculator
Ciwujianoside C1 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 0.9586 mL | 4.7929 mL | 9.5858 mL | 19.1716 mL | 23.9645 mL |
5 mM | 0.1917 mL | 0.9586 mL | 1.9172 mL | 3.8343 mL | 4.7929 mL |
10 mM | 0.0959 mL | 0.4793 mL | 0.9586 mL | 1.9172 mL | 2.3964 mL |
50 mM | 0.0192 mL | 0.0959 mL | 0.1917 mL | 0.3834 mL | 0.4793 mL |
100 mM | 0.0096 mL | 0.0479 mL | 0.0959 mL | 0.1917 mL | 0.2396 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Ciwujianoside C4
Catalog No.:BCX1031
CAS No.:114906-75-1
- Ciwujianoside D1
Catalog No.:BCX1030
CAS No.:114912-35-5
- Ciwujianoside D2
Catalog No.:BCX1029
CAS No.:114892-57-8
- 6-Hydroxymusizin 8-glucoside
Catalog No.:BCX1028
CAS No.:23566-96-3
- 18α,20β-Glycyrrhizic acid
Catalog No.:BCX1027
CAS No.:83896-44-0
- Gallic acid 4-O-β-D-glucopyranoside
Catalog No.:BCX1026
CAS No.:84274-52-2
- Flavanone hydrazone
Catalog No.:BCX1025
CAS No.:1692-46-2
- Notoginsenoside D
Catalog No.:BCX1024
CAS No.:193895-50-0
- Pseudoginsenoside
Catalog No.:BCX1023
CAS No.:96158-07-5
- Diphylloside A
Catalog No.:BCX1022
CAS No.:113558-11-5
- Soyasaponin Be
Catalog No.:BCX1021
CAS No.:117210-14-7
- Pseudostellarin A
Catalog No.:BCX1020
CAS No.:156430-20-5
- Agrimoniin
Catalog No.:BCX1033
CAS No.:82203-01-8
- Acetylalkannin
Catalog No.:BCX1034
CAS No.:34232-27-4
- Isoferulic Acid
Catalog No.:BCX1035
CAS No.:537-73-5
- α-Norbixin
Catalog No.:BCX1036
CAS No.:626-76-6
- 6-Iodo 5,7,3',4',5'-Pentamethoxyflavone
Catalog No.:BCX1037
CAS No.:1192850-63-7
- 3β,13-dihydroxy-ursan-28-oic acid-13-lactone
Catalog No.:BCX1038
CAS No.:29428-70-4
- Regaloside H
Catalog No.:BCX1039
CAS No.:126239-77-8
- (+)-trans-Khellactone
Catalog No.:BCX1040
CAS No.:20516-17-0
- (-)-cis-Khellactone
Catalog No.:BCX1041
CAS No.:54712-23-1
- L-1,2,3,4-Tetrahydronorharman-3-carboxylic acid
Catalog No.:BCX1042
CAS No.:42438-90-4
- 13β,21-Dihydroxyeurycomanone
Catalog No.:BCX1043
CAS No.:138874-44-9
- Wilforlide B
Catalog No.:BCX1044
CAS No.:84104-70-1
Comprehensive phytochemical analysis and sedative-hypnotic activity of two Acanthopanax species leaves.[Pubmed:33605281]
Food Funct. 2021 Mar 15;12(5):2292-2311.
Acanthopanax senticosus leaves (SCL) and Acanthopanax sessiliflorus leaves (SFL), which are usually made into functional teas, possess similar pharmacological activities. With the aim of revealing their chemical compositions and evaluating their sedative-hypnotic effects, comprehensive metabolite profiling analysis based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) and high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) as well as bioassay studies in mice were performed for the first time. Firstly, a total of 75 compounds (including 69 shared components) were identified or briefly characterized. Results indicated that the leaves of the two species were both rich in phytochemicals and contained similar structural types. Secondly, 20 and 7 chemical markers were identified from SCL and SFL, respectively. Five oleanane-type triterpene saponins (Ciwujianoside C1, C3, D2, E and saniculoside N) and two lupine-type triterpene saponins (1-deoxychiisanoside and 24-hydroxychiisanoside) may be used for rapid identification of SCL and SFL. Thirdly, the contents of rutin, hederacoside D, ciwujianoside B, -C3, -E and ursolic acid in SCL (0.308%, 0.024%, 0.042%, 0.131%, 0.038%, and 0.255%, respectively) were higher than in SFL (0.067%, 0.005%, 0.012%, 0.015%, 0.002%, and 0.087%, respectively). Fourthly, an in vivo bioassay verified that both SCL and SFL could inhibit autonomous activity, shorten sleep latency and prolong sleep duration in a dose-dependent manner. To a certain degree, SCL showed a higher and more stable effect. The hypnotic effect could be inhibited by flumazenil (FLU). The two leaves not only had an obvious antagonism action of p-chlorophenoxyacetic acid (pCPA) but also showed a synergistic hypnotic effect with 5-hydroxytryptophan (5-HTP). The beneficial bioactivity may be mediated by 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (GABA). Finally, network pharmacology analysis showed that the undifferentiated and differentiated compounds were the material basis for the similar and the different activities of two leaves. Some typical chemical markers (such as saniculoside N, hederacoside D, ciwujianoside C3, -E and ursolic acid, 24-hydroxychiisanoside and 1-deoxyisochiisanoside) were the potential active compounds and could be used as quality markers in the future. The present study furnished a basis for the further development and utilization of the leaves of these two Acanthopanax species.
Biologically active triterpenoid saponins from Acanthopanax senticosus.[Pubmed:17125224]
J Nat Prod. 2006 Nov;69(11):1577-81.
Three new triterpenoid saponins, acanthopanaxosides A (1), B (7), and C (13), were isolated from the leaves of Acanthopanax senticosus, together with 12 known saponins. The structures of these new saponins were established as 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-30-nor-olean-12,20(29)-dien-28-oic acid 28-O-alpha-L-rhamnopyranosyl-(1-->4)-6-O-acetyl-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (1), 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranosyl oleanolic acid 28-O-alpha-L-rhamnopyranosyl-(1-->4)-6-O-acetyl-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (7), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-3beta-hydroxyolean-12-ene-28,29-dioic acid (13), on the basis of spectroscopic analysis and chemical degradation. Among the known compounds, sessiloside and tauroside H1 are reported for the first time from A. senticosus. The biological activity of compounds 1-15 was examined against pancreatic lipase. Ciwujianoside C1 (6), tauroside H1 (11), 3-O-alpha-rhamnopyranosyl-(1-->2)-alpha-arabinopyranosyl mesembryanthemoidigenic acid (12), acanthopanaxoside C (13), sessiloside (14), and chiisanoside (15) inhibited pancreatic lipase activity in vitro. In turn, ciwujianosides C2 (3), D2 (5), C4 (8), and C3 (10) and hederasaponin B (9) enhanced this enzyme.