Home >>Botany >> Alocasia cucullata

Alocasia cucullata

Alocasia cucullata

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Alocasia cucullata

  1. Cat.No. Product Name CAS Number COA
  2. BCN4537 3,4-Dihydroxybenzoic acid99-50-3 Instructions

References

In vitro and in vivo anti-malignant melanoma activity of Alocasia cucullata via modulation of the phosphatase and tensin homolog/phosphoinositide 3-kinase/AKT pathway.[Pubmed: 29180042]


Alocasia cucullata, a Chinese herb, has been used as an anticancer treatment in southern China. Phosphatase and tensin (PTEN), is a tumor suppressor gene and the loss of PTEN expression may activate the phosphoinositide-3-kinase (PI3K)/AKT signaling pathway which play a key role in tumors formation and progression. In this study, we evaluated the anti-melanoma effect and the underlying mechanism of 50% ethanolic extract of A. cucullata (EAC) in vitro and in vivo. Using MTT, wound healing, and transwell assays, we found that EAC suppressed the proliferation, migration, and invasion of melanoma cells (B16-F10, A375 and A2058) in a dose-dependent manner. We also found that EAC suppresses B16-F10 tumor growth in a xenografted mouse model. Western blot analysis revealed that the expression level of PTEN was up-regulated, and phosphorylation of PI3K and AKT reduced in B16-F10 cells and tumor tissues after EAC treatment. No significant differences were observed in PI3K and AKT expression. Moreover, immunohistochemistry showed that the number of PTEN-positive cells in tumor tissues increased and that of p-AKT-positive cells decreased with EAC treatment, corroborating the western blot results. Our data reveal that EAC can inhibit malignant melanoma in vitro and in vivo and suggest that its anti-tumor effect is associated with modulation of the PTEN/ PI3K/AKT signaling pathway. In summary, our findings highlight a promising herbal remedy for the treatment of malignant melanoma, which warrants further study.


Identification of Alocasia odora (Kuwazuimo in Japanese) Using PCR Method.[Pubmed: 28260730]


Kuwazuimo (Alocasia odora) and shimakuwazuimo (Alocasia cucullata) are evergreen perennial plants that originated in East Asia. Although inedible, they are occasionally eaten by mistake because they resemble satoimo (Colocasia esculenta), and this has caused food poisoning in Japan. It is not easy to determine the cause of a food poisoning outbreak from the shape or chemical composition when the available sample is small. Therefore, we developed a new primer pair for PCR to identify kuwazuimo and shimakuwazuimo in small samples, based on the internal transcribed spacer (ITS) region of ribosomal DNA. Using PCR with the developed primer pair, we detected all samples of kuwazuimo obtained from the market, while excluding 17 other kinds of crops. The samples were identified as shimakuwazuimo by DNA sequencing of the PCR products. The present PCR method showed high specificity and was confirmed to be applicable to the identification of kuwazuimo and shimakuwazuimo from various crops.


Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants.[Pubmed: 27294620]


Pantoea agglomerans, a bacterium associated with plants, is not an obligate infectious agent in humans. However, it could be a cause of opportunistic human infections, mostly by wound infection with plant material, or as a hospital-acquired infection, mostly in immunocompromised individuals. Wound infection with P. agglomerans usually follow piercing or laceration of skin with a plant thorn, wooden splinter or other plant material and subsequent inoculation of the plant-residing bacteria, mostly during performing of agricultural occupations and gardening, or children playing. Septic arthritis or synovitis appears as a common clinical outcome of exogenous infection with P. agglomerans, others include endophthalmitis, periostitis, endocarditis and osteomyelitis. Another major reason for clinical infection with P. agglomerans is exposure of hospitalized, often immunodeficient individuals to medical equipment or fluids contaminated with this bacterium. Epidemics of nosocomial septicemia with fatal cases have been described in several countries, both in adult and paediatric patients. In most cases, however, the clinical course of the hospital-acquired disease was mild and application of the proper antibiotic treatment led to full recovery. Compared to humans, there are only few reports on infectious diseases caused by Pantoea agglomerans in vertebrate animals. This species has been identified as a possible cause of equine abortion and placentitis and a haemorrhagic disease in dolphin fish (Coryphaena hippurus). P. agglomerans strains occur commonly, usually as symbionts, in insects and other arthropods. Pantoea agglomerans usually occurs in plants as an epi- or endophytic symbiont, often as mutualist. Nevertheless, this species has also also been identified as a cause of diseases in a range of cultivable plants, such as cotton, sweet onion, rice, maize, sorghum, bamboo, walnut, an ornamental plant called Chinese taro (Alocasia cucullata), and a grass called onion couch (Arrhenatherum elatius). Some plant-pathogenic strains of P. agglomerans are tumourigenic, inducing gall formation on table beet, an ornamental plant gypsophila (Gypsophila paniculata), wisteria, Douglas-fir and cranberry. Recently, a Pantoea species closely related to P. agglomerans has been identified as a cause of bacterial blight disease in the edible mushroom Pleurotus eryngii cultivated in China. The genetically governed determinants of plant pathogenicity in Pantoea agglomerans include such mechanisms as the hypersensitive response and pathogenicity (hrp) system, phytohormones, the quorum-sensing (QS) feedback system and type III secretion system (T3SS) injecting the effector proteins into the cytosol of a plant cell.


The cytotoxic and tyrosine kinase inhibitory properties of C21 steroids and iridoids from the tubers of Alocasia cucullata.[Pubmed: 27120176]


Ten steroids and iridoids were isolated from the tubers of Alocasia cucullata (Lour.) G. Don. Among them, alocasgenin A (1) and alocasgenoside B-C (2-3) were new compounds and the aglycone of compound 1, obtained from the acid hydrolysis of 1, was named alocasgenol (1a). Also, for the first time, tenacigenin B (4), 17β-tenacigenin-B (5), 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-tenacigenin C (6), marsdenoside A-B (7-8) and tenacigenoside A-B (9-10) were isolated from the genus Alocasia. The chemical structures were elucidated by the extensive analysis of spectral data and compared with the literature. By evaluation of the cytotoxic and tyrosine kinase inhibition, compounds 1-10, 1a and compound 2 showed significant growth inhibition against two tumour cell lines, MGC-803 and HT-29, while compounds 1, 1a, 3, 6 and 8 presented moderate inhibition. Furthermore, compound 2 had the inhibitory property against the enzyme activity biochemically.


Antitumor effect and apoptosis induction of Alocasia cucullata (Lour.) G. Don in human gastric cancer cells in vitro and in vivo.[Pubmed: 25888009]


Alocasia cucullata (Lour.) G. Don was applied in traditional Chinese medicine for the treatment of cancer in Chinese Southwest area. Its antitumor effect was scrutinized in vitro and in vivo. And for the first time, the mechanism of extract of A. cucullata (EAC) against human gastric cancer cell was well examined.


Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity.[Pubmed: 24086508]


Chinese herbal medicines have long been used to treat various illnesses by modulating the human immune response. In this study, we investigate the immuno-modulating effect and antitumor activity of Alocasia Cucullata (AC), a Chinese herb traditionally used to treat infection and cancer. We found that the whole water extract of AC roots could significantly attenuate tumor growth in mouse tumor models. The median survival time of the AC-treated mice was 43 days, 16 days longer than that of the control group. Moreover, the AC-treated mice showed substantially higher induction of key antitumor cytokines, such as IL-2, IFN-γ, and TNF-α, indicating that AC may exert antitumor effect by activating antitumor immunity. To further pinpoint the cellular and molecular mechanism of AC, we studied the dose response of a human monocytic cell line, THP-1, to the whole water extract of AC. Treatment of the AC extract significantly induced THP-1 differentiation into macrophage-like cells and the differentiated THP-1 showed expression of specific macrophage surface markers, such as CD11b and CD14, as well as productions of antitumor cytokines, e.g. IFN-γ and TNF-α. Our data thus point to AC as potentially a new, alternative immuno-modulating herbal remedy for anticancer treatment.


Giant taro and its relatives: a phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region.[Pubmed: 22209857]


Alocasia comprises over 113 species of rainforest understorey plants in Southeast Asia, the Malesian region, and Australia. Several species, including giant taro, Alocasia macrorrhizos, and Chinese taro, Alocasia cucullata, are important food plants or ornamentals. We investigated the biogeography of this genus using plastid and nuclear DNA sequences (5200 nucleotides) from 78 accessions representing 71 species, plus 25 species representing 16 genera of the Pistia clade to which Alocasia belongs. Divergence times were inferred under strict and relaxed clock models, and ancestral areas with Bayesian and maximum likelihood approaches. Alocasia is monophyletic and sister to Colocasiagigantea from the SE Asian mainland, whereas the type species of Colocasia groups with Steudnera and Remusatia, requiring taxonomic realignments. Nuclear and plastid trees show topological conflict, with the nuclear tree reflecting morphological similarities, the plastid tree species' geographic proximity, suggesting chloroplast capture. The ancestor of Alocasia diverged from its mainland sister group c. 24 million years ago, and Borneo then played a central role in the expansion of Alocasia: 11-13 of 18-19 inferred dispersal events originated on Borneo. The Philippines were reached from Borneo 4-5 times in the Late Miocene and Early Pliocene, and the Asian mainland 6-7 times in the Pliocene. Domesticated giant taro originated on the Philippines, Chinese taro on the Asian mainland.


Isolation of a novel N-acetyl-D-lactosamine specific lectin from Alocasia cucullata (Schott.).[Pubmed: 16314976]


An N-acetyl-D: -lactosamine (LacNAc) specific lectin from tubers of Alocasia cucullata was purified by affinity chromatography on asialofetuin-linked amino activated silica. The pure lectin showed a single band in SDS-PAGE at pH 8.8 and was a homotetramer with a subunit molecular mass of 13.5 kDa and native molecular mass of 53 kDa. It was heat stable up to 55 degrees C for 15 min and showed optimum hemagglutination activity from pH 2 to 11. The lectin was affected by denaturing agents such as urea (2 M: ), thiourea (2 M: ) and guanidine-HCl (0.5 M: ) and did not require Ca2+ and Mn2+ for its activity. It was a potent mitogen at 10 microg/ml towards human peripheral blood mononuclear cells with 50% growth inhibitory potential towards SiHa (human cervix ) cancer cell line at 100 microg/ml.


Is Nai Habarala (Alocasia cucullata) a poisonous plant?[Pubmed: 8342179]


Nai Habarala is not documented as a poisonous plant. However, we report two cases of fatal poisoning following ingestion of its fruit. The clinical manifestations have a similarity to cyanogenic glycoside poisoning.