Asterias amurensis
Asterias amurensis
1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.
Natural products/compounds from Asterias amurensis
- Cat.No. Product Name CAS Number COA
- BCN8390 Myristic acid544-63-8 Instructions
The invasion risk of species associated with Japanese Tsunami Marine Debris in Pacific North America and Hawaii.[Pubmed: 29395102]
Marine debris from the Great Tsunami of 2011 represents a unique transport vector for Japanese species to reach Pacific North America and Hawaii. Here we characterize the invasion risk of invertebrate species associated with tsunami debris using a screening-level risk assessment tool - the Canadian Marine Invasive Screening Tool (CMIST). Higher-risk invertebrate invaders were identified for each of five different ecoregions. Some of these are well-known global invaders, such as the mussel Mytilus galloprovincialis and the ascidian Didemnum vexillum which already have invasion histories in some of the assessed ecoregions, while others like the sea star Asterias amurensis and the shore crab Hemigrapsus sanguineus have yet to invade large portions of the assessed ecoregions but also are recognized global invaders. In general, the probability of invasion was lower for the Gulf of Alaska and Hawaii, in part due to lower climate matches and the availability of other invasion vectors.
Enzyme-linked immunosorbent assay of relaxin-like gonad-stimulating peptide in the starfish Patiria (Asterina) pectinifera.[Pubmed: 28859971]
A relaxin-like gonad-stimulating peptide (RGP) from starfish Patiria (Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. Recently, we succeeded in obtaining specific antibodies against P. pectinifera RGP (PpeRGP). In this study, the antibodies were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) for the measurement of PpeRGP. A biotin-conjugated peptide that binds to peroxidase-conjugated streptavidin is specifically detectable using 3,3',5,5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate; therefore, biotin-conjugated RGP (biotin-PpeRGP) was synthesized chemically. Similarly to PpeRGP, synthetic biotin-PpeRGP bound to the antibody against PpeRGP. In binding experiments with biotin-PpeRGP using wells coated with the antibody, a displacement curve was obtained using serial concentrations of PpeRGP. The ELISA system showed that PpeRGP could be measured in the range 0.01-10pmol per 50µl assay buffer. On the contrary, the B-chains of PpeRGP, Asterias amurensis RGP, Aphelasterias japonica RGP, and human relaxin showed minimal cross-reactivity in the ELISA, except that the A-chain of PpeRGP affected it slightly. These results strongly suggest that this ELISA system is highly specific and sensitive with respect to PpeRGP.
Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon.[Pubmed: 28821872]
Marine invertebrates associate with diverse microorganisms. Microorganisms even inhabit coelomic fluid (CF), namely, the fluid filling the main body cavity of echinoderms. The CF microbiota potentially impacts host health and disease. Here, we analysed the CF microbiota in two common coastal starfish species, Patiria pectinifera and Asterias amurensis. Although microbial community structures were highly variable among individual starfish, those of P. pectinifera were compositionally similar to those in the surrounding seawater. By contrast, many A. amurensis individuals harboured unique microbes in the CF, which was dominated by the unclassified Thiotrichales or previously unknown Helicobacter-related taxon. In some individuals, the Helicobacter-related taxon was the most abundant genus-level taxon, accounting for up to 97.3% of reads obtained from the CF microbial community. Fluorescence in situ hybridization using a Helicobacter-related-taxon-specific probe suggested that probe-reactive cells in A. amurensis were spiral-shaped, morphologically similar to known Helicobacter species. Electron microscopy revealed that the spiral cells had a prosthecate-like polar appendage that has never been reported in Helicobacter species. Although culture of Helicobacter-related taxon was unsuccessful, this is the first report of the dominance of a Helicobacter-related taxon in invertebrates and non-digestive organs, reshaping our knowledge of the phylogeography of Helicobacter-related taxa.
Radioimmunoassay of relaxin-like gonad-stimulating peptide in the starfish Patiria (=Asterina) pectinifera.[Pubmed: 27838378]
A relaxin-like gonad-stimulating peptide (RGP) from starfish Patiria (=Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. An antiserum against P. pectinifera RGP (PpeRGP) was produced by immunizing rabbits with a PpeRGP sulfanyl-polyethylene glycol derivative conjugated with keyhole limpet hemocyanin (KLH) as the antigen. The antiserum was used for the development of a specific and sensitive radioimmunoassay (RIA) for the measurement of RGP. In binding experiments using radioiodinated PpeRGP and antiserum against PpeRGP, a displacement curve was obtained using radioinert PpeRGP. The sensitivity of the RIA, defined as the amount of PpeRGP that significantly decreased the counts by 2 SD from the 100% bound point, averaged 0.040±0.002pmol PpeRGP per 100μl assay buffer (0.40±0.02nM) in 10 assays. Intra-assay and inter-assay coefficients of variation were 6.1% and 2.7%, respectively. Serial dilution of whole homogenates from the radial nerve cords and circumoral nerve-rings of P. pectinifera produced displacement curves parallel to the PpeRGP standard. Thus, the amounts of PpeRGP were determined as 1.54±0.09pmol/mg wet weight of radial nerves and 0.87±0.04pmol/mg wet weight of nerve-rings, respectively. On contrary, pyloric stomach, pyloric caeca, tube-feet, ovaries, testes, and ovarian follicle cells did not react in the RIA system. Furthermore, the A- and B-chains of PpeRGP, Asterias amurensis RGP, bovine insulin, and human relaxin did not show cross-reactivity in the RIA. These results strongly suggest that the RIA system is a highly specific and sensitive with respect to PpeRGP.
Molecular Genetic Markers of Intra- and Interspecific Divergence within Starfish and Sea Urchins (Echinodermata).[Pubmed: 27682169]
A fragment of the mitochondrial COI gene from isolates of several echinoderm species was sequenced. The isolates were from three species of starfish from the Asteriidae family (Asterias amurensis and Aphelasterias japonica collected in the Sea of Japan and Asterias rubens collected in the White Sea) and from the sea urchin Echinocardium cordatum (family Loveniidae) collected in the Sea of Japan. Additionally, regions including internal transcribed spacers and 5.8S rRNA (ITS1 - 5.8S rDNA - ITS2) were sequenced for the three studied starfish species. Phylogenetic analysis of the obtained COI sequences together with earlier determined homologous COI sequences from Ast. forbesii, Ast. rubens, and Echinocardium laevigaster from the North Atlantic and E. cordatum from the Yellow and North Seas (GenBank) placed them into strictly conspecific clusters with high bootstrap support (99% in all cases). Only two exceptions - Ast. rubens DQ077915 sequence placed with the Ast. forbesii cluster and Aph. japonica DQ992560 sequence placed with the Ast. amurensis cluster - were likely results of species misidentification. The intraspecific polymorphism for the COI gene within the Asteriidae family varied within a range of 0.2-0.9% as estimated from the genetic distances. The corresponding intrageneric and intergeneric values were 10.4-12.1 and 21.8-29.8%, respectively. The interspecific divergence for the COI gene in the sea urchin of Echinocardium genus (family Loveniidae) was significantly higher (17.1-17.7%) than in the starfish, while intergeneric divergence (14.6-25.7%) was similar to that in asteroids. The interspecific genetic distances for the nuclear transcribed sequences (ITS1 - 5.8S rDNA - ITS2) within the Asteriidae family were lower (3.1-4.5%), and the intergeneric distances were significantly higher (32.8-35.0%), compared to the corresponding distances for the COI gene. These results suggest that the investigated molecular-genetic markers could be used for segregation and identification of echinoderm species.
Multiple dispersal vectors drive range expansion in an invasive marine species.[Pubmed: 27552100]
The establishment and subsequent spread of invasive species is widely recognized as one of the most threatening processes contributing to global biodiversity loss. This is especially true for marine and estuarine ecosystems, which have experienced significant increases in the number of invasive species with the increase in global maritime trade. Understanding the rate and mechanisms of range expansion is therefore of significant interest to ecologists and conservation managers alike. Using a combination of population genetic surveys, environmental DNA (eDNA) plankton sampling and hydrodynamic modelling, we examined the patterns of introduction of the predatory Northern Pacific seastar (Asterias amurensis) and pathways of secondary spread within southeast Australia. Genetic surveys across the invasive range reveal some genetic divergence between the two main invasive regions and no evidence of ongoing gene flow, a pattern that is consistent with the establishment of the second invasive region via a human-mediated translocation event. In contrast, hydrodynamic modelling combined with eDNA plankton sampling demonstrated that the establishment of range expansion populations within a region is consistent with natural larval dispersal and recruitment. Our results suggest that both anthropogenic and natural dispersal vectors have played an important role in the range expansion of this species in Australia. The multiple modes of spread combined with high levels of fecundity and a long larval duration in A. amurensis suggests it is likely to continue its range expansion and significantly impact Australian marine ecosystems.