[6]-GingerolCAS# 39886-76-5 |
- 6-Gingerol
Catalog No.:BCN1030
CAS No.:23513-14-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 39886-76-5 | SDF | Download SDF |
PubChem ID | 3473 | Appearance | Oil |
Formula | C17H26O4 | M.Wt | 294.4 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-3-one | ||
SMILES | CCCCCC(CC(=O)CCC1=CC(=C(C=C1)O)OC)O | ||
Standard InChIKey | NLDDIKRKFXEWBK-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C17H26O4/c1-3-4-5-6-14(18)12-15(19)9-7-13-8-10-16(20)17(11-13)21-2/h8,10-11,14,18,20H,3-7,9,12H2,1-2H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
[6]-Gingerol Dilution Calculator
[6]-Gingerol Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.3967 mL | 16.9837 mL | 33.9674 mL | 67.9348 mL | 84.9185 mL |
5 mM | 0.6793 mL | 3.3967 mL | 6.7935 mL | 13.587 mL | 16.9837 mL |
10 mM | 0.3397 mL | 1.6984 mL | 3.3967 mL | 6.7935 mL | 8.4918 mL |
50 mM | 0.0679 mL | 0.3397 mL | 0.6793 mL | 1.3587 mL | 1.6984 mL |
100 mM | 0.034 mL | 0.1698 mL | 0.3397 mL | 0.6793 mL | 0.8492 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Stigmalactam
Catalog No.:BCN0482
CAS No.:289499-72-5
- Isorengyol
Catalog No.:BCN0481
CAS No.:101489-38-7
- 4-(Acetoxymethyl)phenyl glucoside
Catalog No.:BCN0480
CAS No.:188290-72-4
- Kokusaginine
Catalog No.:BCN0479
CAS No.:484-08-2
- 2,4,6-Trihydroxy-3-prenylacetophenone
Catalog No.:BCN0478
CAS No.:27364-71-2
- Ferruginoside C
Catalog No.:BCN0477
CAS No.:213991-03-8
- (±)-8-Gingerol
Catalog No.:BCN0476
CAS No.:77398-92-6
- 2',3'-Dehydromarmesin
Catalog No.:BCN0475
CAS No.:28664-60-0
- Polypodine B 20,22-acetonide
Catalog No.:BCN0474
CAS No.:159858-85-2
- Acrotrione
Catalog No.:BCN0473
CAS No.:2349327-31-5
- 1,4-Dihydro-1-methyl-4-oxonicotinamide
Catalog No.:BCN0472
CAS No.:769-49-3
- 1-O-Cinnamoylglucose
Catalog No.:BCN0471
CAS No.:40004-96-4
- Acrovestone
Catalog No.:BCN0484
CAS No.:24177-16-0
- Marionol
Catalog No.:BCN0485
CAS No.:65602-55-3
- Verproside
Catalog No.:BCN0486
CAS No.:50932-20-2
- 5-Hydroxy-6,7,3',4'-tetramethoxyflavone
Catalog No.:BCN0487
CAS No.:21763-80-4
- Piperdardine
Catalog No.:BCN0488
CAS No.:188426-70-2
- 4''-O-Methylcatalposide
Catalog No.:BCN0489
CAS No.:887140-17-2
- Apigenin 7,4'-di-O-alloside
Catalog No.:BCN0490
CAS No.:95693-63-3
- Tsaokoin
Catalog No.:BCN0491
CAS No.:343605-41-4
- Piperchabamide B
Catalog No.:BCN0492
CAS No.:807618-21-9
- Piceatannol 4'-O-glucoside
Catalog No.:BCN0493
CAS No.:116181-54-5
- 6-O-Veratroylcatalpol
Catalog No.:BCN0494
CAS No.:56973-43-4
- Uvamalol D
Catalog No.:BCN0495
CAS No.:545404-02-2
The integration of MS-based metabolomics and multivariate data analysis allows for improved quality assessment of Zingiber officinale Roscoe.[Pubmed:34311278]
Phytochemistry. 2021 Oct;190:112843.
Ginger (Zingiber officinale Roscoe) is consumed for health-promoting effects and as a food condiment. Comprehensive phytochemical analysis, other than gingerols and shogaols, has not yet been deeply investigated. Hence, the current research aimed to establish a non-targeted metabolomics approach for the discrimination between fresh ginger rhizome samples collected from four different producing countries, i.e., China, India, Pakistan, and Peru. In addition, lab-dried samples were analyzed to trace drying-induced metabolites. A comprehensive extraction procedure was carried out resulting in production of polar and non-polar fractions. The polar fraction was analyzed by ultra-performance liquid chromatography coupled with Fourier transform tandem mass spectrometry (UPLC-C18-FT-MS/MS) and gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) post derivatization. UPLC-C8-FT-MS/MS was used for analysis of non-polar fraction. Results revealed for identification of a total of 253 metabolites. In addition, multivariate data analysis (MVDA), including principal component analysis (PCA) demonstrated clustering of Asian specimens. Several metabolites with a characteristic pattern for the origin revealing the highest contents of bioactive metabolites in the Peruvian product. Moreover, chemical markers identified, including [6]-Gingerol and [6]-shogaol discriminating between fresh and dried samples. Furthermore, abundances of some primary metabolites, including amino acids and cinnamic acid, have confirmed the biosynthetic pathway of gingerols and their transformation upon drying to shogaols. The proposed approach can be applied as a potential candidate for quality assessment of ginger and other medicinal plants.