Galanal BCAS# 104113-52-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 104113-52-2 | SDF | Download SDF |
PubChem ID | 3086504 | Appearance | Powder |
Formula | C20H30O3 | M.Wt | 318.4 |
Type of Compound | Diterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (4aS,6aS,7R,11aR,11bS)-7-hydroxy-4,4,11b-trimethyl-1,2,3,4a,5,6,7,8,11,11a-decahydrocyclohepta[a]naphthalene-6a,9-dicarbaldehyde | ||
SMILES | CC1(CCCC2(C1CCC3(C2CC=C(CC3O)C=O)C=O)C)C | ||
Standard InChIKey | UDKRLAJJSYRYRU-NIMBFUQJSA-N | ||
Standard InChI | InChI=1S/C20H30O3/c1-18(2)8-4-9-19(3)15(18)7-10-20(13-22)16(19)6-5-14(12-21)11-17(20)23/h5,12-13,15-17,23H,4,6-11H2,1-3H3/t15-,16+,17+,19-,20-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Galanal B Dilution Calculator
Galanal B Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.1407 mL | 15.7035 mL | 31.407 mL | 62.8141 mL | 78.5176 mL |
5 mM | 0.6281 mL | 3.1407 mL | 6.2814 mL | 12.5628 mL | 15.7035 mL |
10 mM | 0.3141 mL | 1.5704 mL | 3.1407 mL | 6.2814 mL | 7.8518 mL |
50 mM | 0.0628 mL | 0.3141 mL | 0.6281 mL | 1.2563 mL | 1.5704 mL |
100 mM | 0.0314 mL | 0.157 mL | 0.3141 mL | 0.6281 mL | 0.7852 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Labda-8(17),12E,14-trien-16,15-olide
Catalog No.:BCX0473
CAS No.:917078-10-5
- Mulberrofuran V
Catalog No.:BCX0472
CAS No.:174423-49-5
- 6'-O-p-Hydroxybenzoylgastrodin
Catalog No.:BCX0471
CAS No.:1551525-70-2
- 15-Hydroxylabda-8(17),12E-dien-16-al
Catalog No.:BCX0470
CAS No.:283614-59-5
- Sanggenol F
Catalog No.:BCX0469
CAS No.:202526-51-0
- Moracin B
Catalog No.:BCX0468
CAS No.:67259-16-9
- Procumboside A
Catalog No.:BCX0467
CAS No.:850894-16-5
- Zataroside A
Catalog No.:BCX0466
CAS No.:95645-53-7
- 6β-Hydroxy-7-epi-α-cyperone
Catalog No.:BCX0465
CAS No.:6851-55-4
- Alpinenone
Catalog No.:BCX0464
CAS No.:103425-23-6
- 15-O-Ethylzerumin B
Catalog No.:BCX0463
CAS No.:1707019-00-8
- Monardin C
Catalog No.:BCX0462
CAS No.:1262796-93-9
- Methyl indole-3-acetate
Catalog No.:BCX0475
CAS No.:1912-33-0
- Rankinidine
Catalog No.:BCX0476
CAS No.:106466-66-4
- Sinapyl alcohol
Catalog No.:BCX0477
CAS No.:537-33-7
- Gypenoside LXXV
Catalog No.:BCX0478
CAS No.:110261-98-8
- Indole-3-acetic acid β-D-glucopyranosyl ester
Catalog No.:BCX0479
CAS No.:19817-95-9
- Schisanhenol B
Catalog No.:BCX0480
CAS No.:102681-52-7
- Schisandrathera D
Catalog No.:BCX0481
CAS No.:2694046-04-1
- Dencichine
Catalog No.:BCX0482
CAS No.:5302-45-4
- Deoxylimonin
Catalog No.:BCX0483
CAS No.:989-23-1
- 5-Methoxydadahol A
Catalog No.:BCX0484
CAS No.:2410566-84-4
- 4-(3-Hydroxydecyl)phenol
Catalog No.:BCX0485
CAS No.:1465124-36-0
- Oxyphyllone D
Catalog No.:BCX0486
CAS No.:1190094-25-7
Suppressive effects of mioga ginger and ginger constituents on reactive oxygen and nitrogen species generation, and the expression of inducible pro-inflammatory genes in macrophages.[Pubmed:16356125]
Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1621-9.
We previously conducted screening tests of the chloroform extracts from a total of 89 species of Japanese plant food items for their suppressive effects on superoxide (O(2) ()) generation through both NADPH oxidase and xanthine oxidase, and reported that mioga ginger (Zingiber mioga Roscoe) indicated the strongest suppressive activities. In this study, the suppressive effects of mioga ginger constituents, aframodial, and Galanal B, together with [6]-gingerol and galanolactone occurring in ginger, on free radical generation and inducible proinflammatory gene expressions were investigated. Of these constituents, aframodial (20 microM) exhibited marked suppressive effects on 12-O-tetradecanoylphorbol-13-acetate-induced O(2) () generation in HL-60 cells and lipopolysaccharide (LPS)/interferon-gamma-induced nitric oxide (NO) generation in RAW264.7 cells (inhibition rates [IRs]=84.6% and 95.9%, respectively). Aframodial also strongly suppressed the stimulated HL-60 cell-induced mutagenicity in AS52 cells (IR=95.9%). The LPS-induced expression of inducible proinflammatory genes such as inducible NO synthase, interleukin (IL)-1beta, IL-6, and granulocyte-macrophage colony-stimulating factor was significantly abolished (IRs=99.1%, 74.6%, 74.0%, and 64.4%, respectively) by aframodial. In addition, degradation of the inhibitor of nuclear factor kappaB was suppressed by this compound (IR=100%), suggesting that the suppression of nuclear factor kappaB activation, at least in part, is involved. Taken together, these results suggest that aframodial has potent antioxidative and anti-inflammatory potentials, and may be a promising candidate in prevention and/or therapy for chronic inflammationassociated carcinogenesis.
Antimicrobial activities of diterpene dialdehydes, constituents from myoga (Zingiber mioga Roscoe), and their quantitative analysis.[Pubmed:15277772]
Biosci Biotechnol Biochem. 2004 Jul;68(7):1601-4.
The antimicrobial activities of the three diterpene dialdehydes, miogadial, galanal A and Galanal B, isolated from flower buds of the myoga (Zingiber mioga Roscoe) plant were investigated with some strains of bacteria, yeasts and molds. Among the three compounds, miogadial exhibited relatively greater antimicrobial activity than the others against Gram-positive bacteria and yeasts. Galanals A and B also behaved as antimicrobial agents against Gram-positive bacteria and yeasts. The content of miogadial in the flower buds was much higher than that in the leaves, whereas galanals A and B were contained at high levels in the leaves and rhizomes.