IsomargariteneCAS# 64271-11-0 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
Cas No. | 64271-11-0 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Powder |
Formula | C28H32O14 | M.Wt | 592.6 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Isomargaritene Dilution Calculator
Isomargaritene Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.6875 mL | 8.4374 mL | 16.8748 mL | 33.7496 mL | 42.187 mL |
5 mM | 0.3375 mL | 1.6875 mL | 3.375 mL | 6.7499 mL | 8.4374 mL |
10 mM | 0.1687 mL | 0.8437 mL | 1.6875 mL | 3.375 mL | 4.2187 mL |
50 mM | 0.0337 mL | 0.1687 mL | 0.3375 mL | 0.675 mL | 0.8437 mL |
100 mM | 0.0169 mL | 0.0844 mL | 0.1687 mL | 0.3375 mL | 0.4219 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Rosmarinyl glucoside
Catalog No.:BCN0189
CAS No.:910028-78-3
- Fortunellin-6''-beta-D-glucopyranoside (Acacetin-7-O-[2''-O-rhamnosyl-6''-O-glucosyl]-glucoside)
Catalog No.:BCN0188
CAS No.:1218774-64-1
- Phloretin 3',5'-Di-C-glucoside
Catalog No.:BCN0187
CAS No.:357401-40-2
- Clemomandshuricoside B
Catalog No.:BCN0186
CAS No.:905294-48-6
- Glaucoside A
Catalog No.:BCN0185
CAS No.:81474-91-1
- 11-Deoxyisomogroside V
Catalog No.:BCN0184
CAS No.:1628293-32-2
- 3',5-Dihydroxy-4',6,7-trimethoxyflavanone
Catalog No.:BCN0183
CAS No.:90850-99-0
- Beta-Dimorphecolic acid (9(S)-HODE)
Catalog No.:BCN0182
CAS No.:18104-44-4
- Diosmin Impurity 5
Catalog No.:BCN0181
CAS No.:122087-66-5
- Diosmin Impurity 8
Catalog No.:BCN0180
CAS No.:28719-21-3
- 13(S)-Hydroxyoctadeca-9(Z),11(E)-dienoic acid (13-HODE)
Catalog No.:BCN0179
CAS No.:18104-45-5
- 11-Oxomogroside IIA2
Catalog No.:BCN0178
CAS No.:2170761-37-0
- Solafuranone
Catalog No.:BCN0191
CAS No.:367965-50-2
- 4,7-Didehydroneophysalin B
Catalog No.:BCN0192
CAS No.:134461-76-0
- 9-Octadecenedioic acid
Catalog No.:BCN0193
CAS No.:4494-16-0
- Isovitexin-2''-O-rhamnoside
Catalog No.:BCN0194
CAS No.:72036-50-1
- 8'-O-(3-hydroxy-3-methylglutaryl)-8'-hydroxyabscisic acid
Catalog No.:BCN0195
CAS No.:69790-31-4
- Menisperine
Catalog No.:BCN0196
CAS No.:25342-82-9
- Batatasin V
Catalog No.:BCN0197
CAS No.:65817-45-0
- alpha-Costic acid
Catalog No.:BCN0198
CAS No.:28399-17-9
- Parishin G
Catalog No.:BCN0199
CAS No.:952283-93-1
- Arvenin III
Catalog No.:BCN0200
CAS No.:65597-45-7
- Physalin X
Catalog No.:BCN0201
CAS No.:72497-31-5
- Notoginsenoside L13
Catalog No.:BCN0202
CAS No.:2485859-56-9
Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents.[Pubmed:26616917]
Food Chem. 2016 Apr 15;197(Pt A):1-6.
The total phenolic and flavonoid content of extracts from peel of kumquat were higher than those from pulp, and those extracted from immature kumquat were higher than those from mature kumquat. The highest levels of phenolic and flavonoid content were obtained in hot water extracts. The flavonoids of kumquat extracted from hot water were mainly soluble conjugated compounds, including C-glycosides, such as 3',5'-di-C-beta-glucopyranosylphloretin (DGPP), acacetin 8-C-neohesperidoside (margaritene), acacetin 6-C-neohesperidoside (Isomargaritene), apigenin 8-C-neohesperidoside, and O-glycosides, such as acacetin 7-O-neohesperidoside (fortunellin), isosakuranetin 7-O-neohesperidoside (poncirin) and apigenin 7-O-neohesperidoside (rhoifolin). A positive relationship existed between total phenolic content and DPPH scavenging potency (p<0.001). Total flavonoid content showed a similar correlation (p<0.001) to DPPH scavenging potency. The effective flavonoids contributing to antioxidant activity were DGPP and apigenin 8-C-neohesperidoside, which could be extracted in high amounts, by hot water at 90 degrees C, from immature kumquat peel.
Drying effect on flavonoid composition and antioxidant activity of immature kumquat.[Pubmed:25308680]
Food Chem. 2015 Mar 15;171:356-63.
A seven flavonoids in hot water extract of immature kumquat (Citrus japonica var. margarita) were identified and quantified (mg/100g fresh fruit): 3',5'-di-C-beta-glucopyranosylphloretin (DGPP, 285.9 +/- 2.9 mg/100g), acacetin 8-C-neohesperidoside (margaritene, 136.2 +/- 2.6 mg/100g), acacetin 6-C-neohesperidoside (Isomargaritene, 119.1 +/- 1.8 mg/100g), fortunellin (acacetin 7-O-neohesperidoside, 28.5 +/- 0.7 mg/100g), apigenin 8-C-neohesperidoside (16.9 +/- 0.1mg/100g), poncirin (isosakuranetin 7-O-neohesperidoside, 5.1 +/- 0.1mg/100g), and rhoifolin (apigenin 7-O-neohesperidoside, 2.0 +/- 0.1mg/100g). When immature kumquat was dried at 110 and 130 degrees C for 0.5h, the antioxidant activity, total phenolic content and identified flavonoids increased. The UV absorbance of browning products of immature kumquat dried at 130 degrees C for 1.5h increased dramatically, while the identified flavonoids decreased. Therefore, it was concluded that drying below 130 degrees C for 1.0 h, could release phenolic compounds, which resulted in the increasing antioxidant activity. Drying at 130 degrees C for 1.5h, it might be due to the effect of formed browning products.