IsosecotanapartholideCAS# 102926-01-2 |
2D Structure
Quality Control & MSDS
Package In Stock
Number of papers citing our products
Cas No. | 102926-01-2 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Oil |
Formula | C15H18O5 | M.Wt | 278.3 |
Type of Compound | Sesquiterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Isosecotanapartholide Dilution Calculator
Isosecotanapartholide Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.5932 mL | 17.9662 mL | 35.9324 mL | 71.8649 mL | 89.8311 mL |
5 mM | 0.7186 mL | 3.5932 mL | 7.1865 mL | 14.373 mL | 17.9662 mL |
10 mM | 0.3593 mL | 1.7966 mL | 3.5932 mL | 7.1865 mL | 8.9831 mL |
50 mM | 0.0719 mL | 0.3593 mL | 0.7186 mL | 1.4373 mL | 1.7966 mL |
100 mM | 0.0359 mL | 0.1797 mL | 0.3593 mL | 0.7186 mL | 0.8983 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 8-Epiloganin
Catalog No.:BCN0838
CAS No.:79172-04-6
- Otobaphenol
Catalog No.:BCN0837
CAS No.:10240-16-1
- Rhamnocitrin 3-galactoside
Catalog No.:BCN0836
CAS No.:99878-05-4
- Ganolucidic acid D
Catalog No.:BCN0835
CAS No.:102607-22-7
- 2,6-Dihydroxyacetophenone-4-O-[4',6'-(S)-hexahydroxydiphenoyl]-beta-D-glucose
Catalog No.:BCN0834
CAS No.:1781226-44-5
- Ganoderenic acid K
Catalog No.:BCN0833
CAS No.:942950-94-9
- Gardoside methyl ester
Catalog No.:BCN0832
CAS No.:93930-20-2
- Oxytroflavoside A
Catalog No.:BCN0831
CAS No.:1391144-80-1
- 12beta-Acetoxy-3beta-hydroxy-7,11,15,23-tetraoxo-lanost-8,20-diene-26-oic acid
Catalog No.:BCN0830
CAS No.:1085338-75-5
- Oxytroflavoside E
Catalog No.:BCN0829
CAS No.:1391144-84-5
- Pinocembrin 7-O-(4'',6''-hexahydroxydiphenoyl)-beta-D-glucose
Catalog No.:BCN0828
CAS No.:1825287-22-6
- Cannabisin P
Catalog No.:BCN0827
CAS No.:2756983-19-2
- Malabaricone C
Catalog No.:BCN0840
CAS No.:63335-25-1
- Baishouwubenzophenone
Catalog No.:BCN0841
CAS No.:115834-34-9
- Malabaricone A
Catalog No.:BCN0842
CAS No.:63335-23-9
- Silybin A
Catalog No.:BCN0843
CAS No.:36804-17-8
- 4-p-Menthan-1,8-diol
Catalog No.:BCN0844
CAS No.:565-48-0
- Neomogroside
Catalog No.:BCN0845
CAS No.:189307-15-1
- Mogroside I-E1
Catalog No.:BCN0846
CAS No.:88901-39-7
- Mogroside I-A1
Catalog No.:BCN0847
CAS No.:88901-46-6
- Mogroside II-B
Catalog No.:BCN0848
CAS No.:942615-25-0
- 11-Oxomogroside I
Catalog No.:BCN0849
CAS No.:918972-06-2
- 11-Deoxymogroside IIIE
Catalog No.:BCN0850
CAS No.:1793003-47-0
- Siraitic acid B
Catalog No.:BCN0851
CAS No.:183374-16-5
Effect of isosecotanapartholide isolated from Artemisia princeps Pampanini on IL33 production and STAT1 activation in HaCaT keratinocytes.[Pubmed:28447741]
Mol Med Rep. 2017 May;15(5):2681-2688.
The present study aimed to investigate the antiinflammatory effect and mechanism of action of Isosecotanapartholide (ISTP), isolated from Artemisia princeps Pampanini extract (APE). The effects of ISTP and APE on the proliferation of human keratinocytes following stimulation by tumor necrosis factoralpha/interferongamma were assessed. ISTP and APE downregulated the expression levels of signal transducer and activator of transcription1 (STAT1), and reduced interleukin33 (IL33) production. ISTP and APE inhibited the mRNA expression levels of thymus and activationregulated chemokine (TARC/CCL17) in a dosedependent manner. Western blot analysis demonstrated that ISTP and APE dosedependently inhibited protein expression levels of intercellular adhesion molecule1 and phosphorylation of STAT1. The results of the present study indicate that ISTP may inhibit TARC/CCL17 production in human epidermal keratinocytes via the STAT1 signaling pathway and may be associated with the inhibition of IL33 production. The current study indicated that ISTP is an active component in APE and may be a potential therapeutic agent for the treatment of inflammatory skin disorders.
Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells.[Pubmed:23860275]
Molecules. 2013 Jul 15;18(7):8275-88.
Medicinal plants play a crucial role in traditional medicine and in the maintenance of human health worldwide. Sesquiterpene lactones represent an interesting group of plant-derived compounds that are currently being tested as lead drugs in cancer clinical trials. Achillea falcata is a medicinal plant indigenous to the Middle Eastern region and belongs to the Asteraceae family, which is known to be rich in sesquiterpene lactones. We subjected Achillea falcata extracts to bioassay-guided fractionation against the growth of HCT-116 colorectal cancer cells and identified four secotanapartholides, namely 3-beta-methoxy-Isosecotanapartholide (1), Isosecotanapartholide (2), tanaphallin (3), and 8-hydroxy-3-methoxyIsosecotanapartholide (4). Three highly oxygenated guaianolides were isolated for the first time from Achillea falcata, namely rupin A (5), chrysartemin B (6), and 1beta, 2beta-epoxy-3beta,4alpha,10alpha-trihydroxyguaian-6alpha,12-olide (7). These sesquiterpene lactones showed no or minor cytotoxicity while exhibiting promising anticancer effects against HCT-116 cells. Further structure-activity relationship studies related the bioactivity of the tested compounds to their skeleton, their lipophilicity, and to the type of functional groups neighboring the main alkylating center of the molecule.
Inhibitors of inducible nitric oxide synthase expression from Artemisia iwayomogi.[Pubmed:12735688]
Arch Pharm Res. 2003 Apr;26(4):301-5.
Nitric oxide (NO) is an important bioactive agent that mediates a wide variety of physiological and pathophysiological events. NO overproduction by inducible nitric oxide synthase (iNOS) results in severe hypotension and inflammation. This investigation is part of a study to discover new iNOS inhibitors from medicinal plants using a macrophage cell culture system. Two sesquiterpenes (1 and 2) were isolated from Artemisia iwayomogi (Compositae) and were found to inhibit NO synthesis (IC50 3.64 microg/mL and 2.81 microg/mL, respectively) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Their structures were identified as 3-O-methyl-Isosecotanapartholide (1) and iso-secotanapartholide (2). Compounds 1 and 2 inhibited the LPS-induced expression of the iNOS enzyme in the RAW 264.7 cells. The inhibition of NO production via the down regulation of iNOS expression may substantially modulate the inflammatory responses.