Kaempferol-7-O-neohesperidosideCAS# 17353-03-6 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 17353-03-6 | SDF | Download SDF |
PubChem ID | 5483905 | Appearance | Powder |
Formula | C27H30O15 | M.Wt | 594.5 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one | ||
SMILES | CC1C(C(C(C(O1)OC2C(C(C(OC2OC3=CC(=C4C(=C3)OC(=C(C4=O)O)C5=CC=C(C=C5)O)O)CO)O)O)O)O)O | ||
Standard InChIKey | ZEJXENDZTYVXDP-CSJHBIPPSA-N | ||
Standard InChI | InChI=1S/C27H30O15/c1-9-17(31)20(34)23(37)26(38-9)42-25-21(35)18(32)15(8-28)41-27(25)39-12-6-13(30)16-14(7-12)40-24(22(36)19(16)33)10-2-4-11(29)5-3-10/h2-7,9,15,17-18,20-21,23,25-32,34-37H,8H2,1H3/t9-,15+,17-,18+,20+,21-,23+,25+,26-,27+/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Reference standards. |
Kaempferol-7-O-neohesperidoside Dilution Calculator
Kaempferol-7-O-neohesperidoside Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.6821 mL | 8.4104 mL | 16.8209 mL | 33.6417 mL | 42.0521 mL |
5 mM | 0.3364 mL | 1.6821 mL | 3.3642 mL | 6.7283 mL | 8.4104 mL |
10 mM | 0.1682 mL | 0.841 mL | 1.6821 mL | 3.3642 mL | 4.2052 mL |
50 mM | 0.0336 mL | 0.1682 mL | 0.3364 mL | 0.6728 mL | 0.841 mL |
100 mM | 0.0168 mL | 0.0841 mL | 0.1682 mL | 0.3364 mL | 0.4205 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- (+)-Neomenthol
Catalog No.:BCN0027
CAS No.:2216-52-6
- Terpinolene
Catalog No.:BCN0026
CAS No.:586-62-9
- Nonanal
Catalog No.:BCN0025
CAS No.:124-19-6
- 1'-Acetoxychavicol acetate
Catalog No.:BCN0024
CAS No.:52946-22-2
- 7-Hydroxy-5-methylflavon
Catalog No.:BCN0023
CAS No.:15235-99-1
- 3-Methylindole
Catalog No.:BCN0022
CAS No.:83-34-1
- Indolelactic acid
Catalog No.:BCN0021
CAS No.:1821-52-9
- Cupressuflavone
Catalog No.:BCN0020
CAS No.:3952-18-9
- Methyl arachidate
Catalog No.:BCN0019
CAS No.:1120-28-1
- a,b-Elemolic acid
Catalog No.:BCN0018
CAS No.:28282-27-1
- Luteolin 7-diglucuronide
Catalog No.:BCN0017
CAS No.:96400-45-2
- 3-Methoxyflavon
Catalog No.:BCN0016
CAS No.:7245-02-5
- (-)-Englerin B
Catalog No.:BCN0029
CAS No.:1094250-13-1
- Saucerneol
Catalog No.:BCN0030
CAS No.:88497-86-3
- 3',4'-Dihydroxyflavone
Catalog No.:BCN0031
CAS No.:4143-64-0
- Sutherlandioside B
Catalog No.:BCN0032
CAS No.:1055329-47-9
- Methyl nonadecanoate
Catalog No.:BCN0033
CAS No.:1731-94-8
- 4'-Methoxyflavone
Catalog No.:BCN0034
CAS No.:4143-74-2
- (1R)-(-)-Menthyl acetate
Catalog No.:BCN0035
CAS No.:2623-23-6
- 8-Acetyl-7-hydroxycoumarin
Catalog No.:BCN0036
CAS No.:6748-68-1
- Steviol 19-glucoside
Catalog No.:BCN0037
CAS No.:64977-89-5
- 1-Octadecanol
Catalog No.:BCN0038
CAS No.:112-92-5
- Myrcene
Catalog No.:BCN0039
CAS No.:123-35-3
- Cucurbitin chloride
Catalog No.:BCN0040
CAS No.:80546-88-9
Analysis of phenolic compounds by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and water-stressed tobacco.[Pubmed:22118617]
Plant Sci. 2012 Jan;182:71-8.
Evaluation of a significant part of the phenylpropanoid pathway metabolites is facilitated by the fast high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC-MS/MS) analytical method. The technology described was applied in tobacco plants (Nicotiana tabacum L. cv. Wisconsin) to identify 20 phenolic compounds and to detect differences in phenylpropanoid profiles in two types of experiments. In the first one, senescent and non-senescent parts of flowering plants were compared, while in the second, watered plants were compared with water-stressed young plants. The 20 identified phenolic compounds were: seven hydroxycinnamoylquinic acids, seven hydroxycinnamic acid glucosides, one salicylic acid glucoside, two conjugated flavonols with disaccharides, and three hydroxycinnamic acid amides (HCAA) of putrescine. In general, the levels of phenylpropanoid compounds increased under water stress or senescent conditions, with the exception of HCAA, which decreased in senescent samples, and 4-O-p-coumaroylquinic acid and trihydroxycinamic acid-O-glucoside, which did not change in both experiments. The main product in all the samples was 5-O-caffeoylquinic acid (neochlorogenic acid). Another compound, Kaempferol-7-O-neohesperidoside, was tentatively identified for the first time in tobacco plants. This method, which can be applied in other plant species, allows a simple and efficient comparative study of metabolite profile variations (qualitative and quantitative) in response to different physiological and/or environmental plant situations.
Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry.[Pubmed:12526005]
J Mass Spectrom. 2003 Jan;38(1):43-9.
Negative electrospray ionization tandem quadrupole mass spectrometry was used to study the collision-induced dissociation (CID) of the O-glycosidic bond from different commercially available flavonoid glycosides. Depending on the structure, flavonoid glycosides can undergo both a collision-induced homolytic and heterolytic cleavage of the O-glycosidic bond producing deprotonated radical aglycone ((Y(0) - H)(-*)) and aglycone (Y(0) (-)) product ions. The relative abundance of the radical aglycone to the aglycone fragment from flavonol-3-O-glycosides increased with increasing number of hydroxyl substituents in the B ring and in the order kaempferol -