MearnsetinCAS# 16805-10-0 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 16805-10-0 | SDF | Download SDF |
PubChem ID | 10359384 | Appearance | Yellow powder |
Formula | C16H12O8 | M.Wt | 332.3 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-(3,5-dihydroxy-4-methoxyphenyl)-3,5,7-trihydroxychromen-4-one | ||
SMILES | COC1=C(C=C(C=C1O)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O | ||
Standard InChIKey | HKEQVXVLTOSXLQ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C16H12O8/c1-23-16-9(19)2-6(3-10(16)20)15-14(22)13(21)12-8(18)4-7(17)5-11(12)24-15/h2-5,17-20,22H,1H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1.Mearnsetin and myricetin have antioxidant activity. |
Mearnsetin Dilution Calculator
Mearnsetin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.0093 mL | 15.0466 mL | 30.0933 mL | 60.1866 mL | 75.2332 mL |
5 mM | 0.6019 mL | 3.0093 mL | 6.0187 mL | 12.0373 mL | 15.0466 mL |
10 mM | 0.3009 mL | 1.5047 mL | 3.0093 mL | 6.0187 mL | 7.5233 mL |
50 mM | 0.0602 mL | 0.3009 mL | 0.6019 mL | 1.2037 mL | 1.5047 mL |
100 mM | 0.0301 mL | 0.1505 mL | 0.3009 mL | 0.6019 mL | 0.7523 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- cis-Miyabenol C
Catalog No.:BCN3347
CAS No.:168037-22-7
- Boc-D-Threoninol(Bzl)
Catalog No.:BCC2703
CAS No.:168034-31-9
- NXY-059
Catalog No.:BCC4955
CAS No.:168021-79-2
- Triptonine B
Catalog No.:BCN3095
CAS No.:168009-85-6
- Otophylloside B 4'''-O-beta-D-oleandropyranoside
Catalog No.:BCN7512
CAS No.:168001-54-5
- Stigmasta-4,22-diene-3beta,6beta-diol
Catalog No.:BCN1533
CAS No.:167958-89-6
- Taxachitriene B
Catalog No.:BCN6951
CAS No.:167906-75-4
- Taxachitriene A
Catalog No.:BCN6952
CAS No.:167906-74-3
- 19(S)-Hydroxyconopharyngine
Catalog No.:BCN3976
CAS No.:16790-93-5
- Crassanine
Catalog No.:BCN4073
CAS No.:16790-92-4
- 2,5-Bis(4-diethylaminophenyl)-1,3,4-oxadiazole
Catalog No.:BCC8502
CAS No.:1679-98-7
- ent-Kaurane-16beta,19,20-triol
Catalog No.:BCN7654
CAS No.:167898-32-0
- Taxin B
Catalog No.:BCN6945
CAS No.:168109-52-2
- Agitoxin 2
Catalog No.:BCC8026
CAS No.:168147-41-9
- Nortenuazonic acid
Catalog No.:BCN1847
CAS No.:16820-44-3
- Wilforol C
Catalog No.:BCN1100
CAS No.:168254-95-3
- Evofolin B
Catalog No.:BCN1101
CAS No.:168254-96-4
- Rimonabant
Catalog No.:BCC4414
CAS No.:168273-06-1
- 3,5-Dimethoxy-3'-hydroxybibenzyl
Catalog No.:BCN8112
CAS No.:168281-05-8
- C-Veratroylglycol
Catalog No.:BCN1102
CAS No.:168293-10-5
- 3-O-Acetyl-16 alpha-hydroxytrametenolic acid
Catalog No.:BCN1532
CAS No.:168293-13-8
- 3-O-Acetyl-16 alpha-hydroxydehydrotrametenolic acid
Catalog No.:BCN1531
CAS No.:168293-14-9
- 3-Epidehydropachymic acid
Catalog No.:BCN3644
CAS No.:168293-15-0
- Asiaticoside
Catalog No.:BCN1011
CAS No.:16830-15-2
Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry.[Pubmed:21761864]
J Agric Food Chem. 2011 Sep 14;59(17):9386-93.
High-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) and tandem mass spectrometry (MS(n)) were used to investigate the phenolic constituents in methanol, water, and methanol/water extracts of Eucalyptus globulus Labill. bark. Twenty-nine phenolic compounds were identified, 16 of them referenced for the first time as constituents of E. globulus bark, namely, quinic, dihydroxyphenylacetic, and caffeic acids, bis(hexahydroxydiphenoyl (HHDP))-glucose, galloyl-bis(HHDP)-glucose, galloyl-HHDP-glucose, isorhamentin-hexoside, quercetin-hexoside, methylellagic acid (EA)-pentose conjugate, myricetin-rhamnoside, isorhamnetin-rhamnoside, Mearnsetin, phloridzin, Mearnsetin-hexoside, luteolin, and a proanthocyanidin B-type dimer. Digalloylglucose was identified as the major compound in the methanol and methanol/water extracts, followed by isorhamnetin-rhamnoside in the methanol extract and by catechin in the methanol/water extract, whereas in the water extract catechin and galloyl- HHDP-glucose were identified as the predominant components. The methanol/water extract was shown be the most efficient to isolate phenolic compounds identified in E. globulus bark.
Antioxidant behavior of mearnsetin and myricetin flavonoid compounds--a DFT study.[Pubmed:21420896]
Spectrochim Acta A Mol Biomol Spectrosc. 2011 Jun;79(1):282-93.
The molecular characteristics of two naturally occurring flavonoid compounds Mearnsetin and myricetin have been computed using density functional theory (DFT) approach with B3LYP/6-311G(d,p) level of theory. The computation and analysis of bond dissociation enthalpy magnitudes for all the OH sites for both the compounds clearly denotes the contribution of the B-ring for the antioxidant activity. The analysis has also indicated the higher values of BDE on the C5-OH radical species in both the compounds. The computed vibrational frequency analysis indicates the absence of imaginary frequency in the neutral as well as radical species of both the flavonoid compounds. The ionisation potential (IP) analysis was found to be within the range of the IP of synthetic food additives. In addition, various molecular descriptors such as electron affinity, hardness, softness, electronegativity, electrophilic index have also been calculated and the validity of Koopman's theorem is verified. The plot of frontier molecular orbital and spin density distribution analysis for neutral and the corresponding radical species for both the compounds have been computed and interpreted. The polar nature and their polarizing capacity are well established through the analysis of dipole moment and polarisability magnitudes.