Salvianolic acid A

CAS# 96574-01-5

Salvianolic acid A

2D Structure

Catalog No. BCN5951----Order now to get a substantial discount!

Product Name & Size Price Stock
Salvianolic acid A: 5mg $23 In Stock
Salvianolic acid A: 10mg Please Inquire In Stock
Salvianolic acid A: 20mg Please Inquire Please Inquire
Salvianolic acid A: 50mg Please Inquire Please Inquire
Salvianolic acid A: 100mg Please Inquire Please Inquire
Salvianolic acid A: 200mg Please Inquire Please Inquire
Salvianolic acid A: 500mg Please Inquire Please Inquire
Salvianolic acid A: 1000mg Please Inquire Please Inquire

Quality Control of Salvianolic acid A

3D structure

Package In Stock

Salvianolic acid A

Number of papers citing our products

Chemical Properties of Salvianolic acid A

Cas No. 96574-01-5 SDF Download SDF
PubChem ID 5281793 Appearance Yellow powder
Formula C26H22O10 M.Wt 494.45
Type of Compound Phenylpropanoids Storage Desiccate at -20°C
Synonyms Dan phenolic acid A
Solubility DMSO : 125 mg/mL (252.81 mM; Need ultrasonic)
Chemical Name (2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-[2-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl]prop-2-enoyl]oxypropanoic acid
SMILES C1=CC(=C(C=C1CC(C(=O)O)OC(=O)C=CC2=C(C(=C(C=C2)O)O)C=CC3=CC(=C(C=C3)O)O)O)O
Standard InChIKey YMGFTDKNIWPMGF-UCPJVGPRSA-N
Standard InChI InChI=1S/C26H22O10/c27-18-7-2-14(11-21(18)30)1-6-17-16(4-9-20(29)25(17)33)5-10-24(32)36-23(26(34)35)13-15-3-8-19(28)22(31)12-15/h1-12,23,27-31,33H,13H2,(H,34,35)/b6-1+,10-5+/t23-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Salvianolic acid A

1 Heliotropium sp. 2 Lithospermum sp. 3 Lycopus sp. 4 Salvia sp.

Biological Activity of Salvianolic acid A

DescriptionSalvianolic acid A has antioxidant, hepatoprotective, antithrombotic effect, and antiplatelet actions. it also has a significant protective effect against isoproterenol-induced myocardial infarction; it activates the Nrf2/HO-1 axis in RPE cells and protects against oxidative stress via activation of Akt/mTORC1 signaling. Salvianolic acid A (oral) can significantly improve glucose metabolism and inhibit oxidative injury as well as protect against impaired vascular responsiveness in STZ-induced diabetic rats. It is a novel matrix metalloproteinase-9 inhibitor, can prevents cardiac remodeling in spontaneously hypertensive rats.
TargetsPI3K | Akt | ROS | Bcl-2/Bax | Caspase | p53 | ERK | JNK | TNF-α | PTEN
In vitro

Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.[Pubmed: 25442283]

Phytomedicine. 2014 Oct 15;21(12):1725-32.

Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel.
METHODS AND RESULTS:
The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of Salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation.
CONCLUSIONS:
These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.

In vivo

Prevention of pulmonary fibrosis with salvianolic acid a by inducing fibroblast cell cycle arrest and promoting apoptosis.[Pubmed: 25102244]

J Ethnopharmacol. 2014 Sep 29;155(3):1589-96.

Danshen (Salvia miltiorrhiza Bunge) is widely used in traditional Chinese medicine (TCM), often in combination with other herbs, to treat a diversity of ailments. More recent studies have focused on its possible roles in the treatment of respiratory diseases (pneumonia and pulmonary fibrosis) and found that it has pharmacological activity that protects pulmonary morphology and function. However, the mechanism underlying this activity has not yet been clarified.
METHODS AND RESULTS:
The purpose of this study was to investigate the anti-pulmonary fibrosis effects exerted by Salvianolic acid A (SAA), the ingredient responsible for the pharmacological activity of Danshen, and the underlying mechanisms. Bleomycin (BLM)-induced rat pulmonary fibrosis was used to evaluate the antifibrotic role of SAA, and fibroblast cells were used to study the mechanism involved. BLM-treated rats exhibited increased alveolar wall thickness and collagen deposition in lung tissues, but these pathologies were greatly attenuated by daily administration of SAA. We also found that SAA significantly inhibited the proliferation, adhesion and migration of fibroblasts in vitro. This was partly due to a strong induction of cell cycle arrest and apoptosis upon SAA treatment. Consistent with these phenotypes, we observed decreased expression of the cell cycle-related proteins cyclin D1, cyclin E1, and cyclin B1, and increased expression of p53 and p21 in SAA-treated cells. In addition, the anti-apoptotic Bcl-2 protein decreased in a dose-dependent manner, while cleaved caspase-3 protein increased upon SAA treatment.
CONCLUSIONS:
These results suggest that the alleviation of rat pulmonary fibrosis by SAA is due to the inhibition of fibroblast proliferation and induction of apoptosis, which occurs mainly through p53-dependent growth arrest and apoptosis. We suggest that SAA should be considered as a potential novel therapeutic agent for the treatment of fibrotic lung diseases.

Protocol of Salvianolic acid A

Cell Research

Salvianolic acid A suppresses CCL-20 expression in TNF-α-treated macrophages and ApoE-deficient mice.[Pubmed: 24853487]

J Cardiovasc Pharmacol. 2014 Oct;64(4):318-25.

The CC chemokine ligand-20 (CCL-20)/macrophage inflammatory protein-3α has been seen as one of the most important chemokines and played a key role in atherogenesis, but the mechanism that underlies the regulation of CCL-20 has not been established clearly yet. The aim of this study was to investigate the influence of Salvianolic acid A (SAA) on the expression of CCL-20 in macrophages and ApoE-deficient (ApoE) mice.
METHODS AND RESULTS:
The expression of CCL-20 was detected both at protein and messenger RNA levels in RAW264.7 cells. We validated the result in ApoE mice that were intraperitoneally injected with SAA. Phosphorylation of p38 mitogen-activated protein kinase was detected with Western blot, and inhibitor of p38 was used to investigate the mechanism of regulation of CCL-20. Hematoxylin and eosin and Oil-Red-O staining were used to evaluate the atherosclerotic lesions and lipid accumulation in ApoE mice. Immunohistochemical analysis was used to detect the expressions of CCL-20 and CCR6 in the atherosclerotic lesions. Immunofluorescent analysis was used to certify the origination of CCL-20. Recombinant tumor necrosis factor-α (TNF-α) upregulated CCL-20 production in dose- and time-dependent manners in RAW264.7 cells. The activity of TNF-α-induced CCL-20 production seemed to be significantly suppressed by SAA. Using p38 mitogen-activated protein kinase inhibitor, we found that p38 mediated the effects of TNF-α- and SAA-induced CCL-20 expression changes. In addition, immunohistochemical analysis of aortic root of ApoE mice also demonstrated that the expressions of CCL-20 and CCR6 were both downregulated significantly with SAA treatment. Furthermore, treatment of SAA inhibited the progression of the atherosclerotic plaques and lipid accumulation.
CONCLUSIONS:
These results demonstrate that TNF-α increased but SAA suppressed CCL-20 production significantly via a novel mechanism.

Animal Research

The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.[Pubmed: 25019380]

PLoS One. 2014 Jul 14;9(7):e102292.


METHODS AND RESULTS:
The purpose of this study was to observe the effects of Salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group.
CONCLUSIONS:
SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.

Salvianolic acid A Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Salvianolic acid A Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Salvianolic acid A

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.0224 mL 10.1122 mL 20.2245 mL 40.449 mL 50.5612 mL
5 mM 0.4045 mL 2.0224 mL 4.0449 mL 8.0898 mL 10.1122 mL
10 mM 0.2022 mL 1.0112 mL 2.0224 mL 4.0449 mL 5.0561 mL
50 mM 0.0404 mL 0.2022 mL 0.4045 mL 0.809 mL 1.0112 mL
100 mM 0.0202 mL 0.1011 mL 0.2022 mL 0.4045 mL 0.5056 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Salvianolic acid A

Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells.[Pubmed:24648921]

Biomed Rep. 2013 Mar;1(2):213-217.

Salvianolic acid A (Sal A) is an effective compound extracted from Salvia miltiorrhiza which has been used in the treatment of various diseases. Preliminary data indicate that Sal A treatment has a specific anti-lung cancer effect. However, the manner in which Sal A regulates cancer growth remains unknown. In this study, the A549 lung cancer cell line and its response to Sal A treatment was examined. Results showed that Sal A treatment significantly decreased A549 cell growth, promoted partial apoptosis and increased mitochondrial membrane permeability. Western blot analysis showed that Sal A upregulated the phosphatase and tensin homolog (PTEN) protein level, while consistently downregulating Akt phosphorylation. These results indicate that Sal A negatively mediates A549 lung cancer cell line growth or apoptosis, most likely by positively regulating PTEN protein level.

Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.[Pubmed:25442283]

Phytomedicine. 2014 Oct 15;21(12):1725-32.

Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of Salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.

Prevention of pulmonary fibrosis with salvianolic acid a by inducing fibroblast cell cycle arrest and promoting apoptosis.[Pubmed:25102244]

J Ethnopharmacol. 2014 Sep 29;155(3):1589-96.

ETHNOPHARMACOLOGICAL RELEVANCE: Danshen (Salvia miltiorrhiza Bunge) is widely used in traditional Chinese medicine (TCM), often in combination with other herbs, to treat a diversity of ailments. More recent studies have focused on its possible roles in the treatment of respiratory diseases (pneumonia and pulmonary fibrosis) and found that it has pharmacological activity that protects pulmonary morphology and function. However, the mechanism underlying this activity has not yet been clarified. MATERIALS AND METHODS: The purpose of this study was to investigate the anti-pulmonary fibrosis effects exerted by Salvianolic acid A (SAA), the ingredient responsible for the pharmacological activity of Danshen, and the underlying mechanisms. Bleomycin (BLM)-induced rat pulmonary fibrosis was used to evaluate the antifibrotic role of SAA, and fibroblast cells were used to study the mechanism involved. RESULTS: BLM-treated rats exhibited increased alveolar wall thickness and collagen deposition in lung tissues, but these pathologies were greatly attenuated by daily administration of SAA. We also found that SAA significantly inhibited the proliferation, adhesion and migration of fibroblasts in vitro. This was partly due to a strong induction of cell cycle arrest and apoptosis upon SAA treatment. Consistent with these phenotypes, we observed decreased expression of the cell cycle-related proteins cyclin D1, cyclin E1, and cyclin B1, and increased expression of p53 and p21 in SAA-treated cells. In addition, the anti-apoptotic Bcl-2 protein decreased in a dose-dependent manner, while cleaved caspase-3 protein increased upon SAA treatment. CONCLUSIONS: These results suggest that the alleviation of rat pulmonary fibrosis by SAA is due to the inhibition of fibroblast proliferation and induction of apoptosis, which occurs mainly through p53-dependent growth arrest and apoptosis. We suggest that SAA should be considered as a potential novel therapeutic agent for the treatment of fibrotic lung diseases.

The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.[Pubmed:25019380]

PLoS One. 2014 Jul 14;9(7):e102292.

The purpose of this study was to observe the effects of Salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (+/-dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.

Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells.[Pubmed:25419632]

Anticancer Drugs. 2015 Feb;26(2):210-23.

Multidrug resistance (MDR) is a major cause for incurable breast cancer. Salvianolic acid A (SAA), the hydrophilic polyphenolic derivative of Salvia miltiorrhiza Bunge (Danshen/Red Sage), was examined for cytotoxicities to MDR MCF-7 human breast cancer cells and their parental counterparts. We have shown that SAA inhibited proliferation, caused cell cycle arrest at the S phase, and induced apoptosis dose dependently to the two kinds of cancer cells. However, the resistant cells were significantly susceptible to the inhibition of SAA compared with the parental cells. SAA increased the level of reactive oxygen species (ROS) by 6.2-fold in the resistant cells, whereas the level of SAA-induced ROS changed only by 1.6-fold in their parental counterparts. Thus, the data showed that the selective cytotoxicity resulted from the hypersensitivity of the resistant cells to the strongly elevated ROS by SAA. In addition, SAA-triggered apoptosis was associated with increased caspase-3 activity, disrupted mitochondrial membrane potential, downregulated Bcl-2 expression, and upregulated Bax expression in the resistant cells. Moreover, SAA downregulated the level of P-glycoprotein, which was overexpressed in the resistant cells. This indicated that SAA modulated MDR. Furthermore, SAA showed higher antitumor activity than did doxorubicin in xenografts established from the resistant cells. The present work raised a possibility that SAA might be considered a potential choice to overcome MDR for the selective susceptibility of the resistant breast cancer cells to SAA treatment.

Salvianolic acid A suppresses CCL-20 expression in TNF-alpha-treated macrophages and ApoE-deficient mice.[Pubmed:24853487]

J Cardiovasc Pharmacol. 2014 Oct;64(4):318-25.

OBJECTIVES: The CC chemokine ligand-20 (CCL-20)/macrophage inflammatory protein-3alpha has been seen as one of the most important chemokines and played a key role in atherogenesis, but the mechanism that underlies the regulation of CCL-20 has not been established clearly yet. The aim of this study was to investigate the influence of Salvianolic acid A (SAA) on the expression of CCL-20 in macrophages and ApoE-deficient (ApoE) mice. METHODS: The expression of CCL-20 was detected both at protein and messenger RNA levels in RAW264.7 cells. We validated the result in ApoE mice that were intraperitoneally injected with SAA. Phosphorylation of p38 mitogen-activated protein kinase was detected with Western blot, and inhibitor of p38 was used to investigate the mechanism of regulation of CCL-20. Hematoxylin and eosin and Oil-Red-O staining were used to evaluate the atherosclerotic lesions and lipid accumulation in ApoE mice. Immunohistochemical analysis was used to detect the expressions of CCL-20 and CCR6 in the atherosclerotic lesions. Immunofluorescent analysis was used to certify the origination of CCL-20. RESULTS: Recombinant tumor necrosis factor-alpha (TNF-alpha) upregulated CCL-20 production in dose- and time-dependent manners in RAW264.7 cells. The activity of TNF-alpha-induced CCL-20 production seemed to be significantly suppressed by SAA. Using p38 mitogen-activated protein kinase inhibitor, we found that p38 mediated the effects of TNF-alpha- and SAA-induced CCL-20 expression changes. In addition, immunohistochemical analysis of aortic root of ApoE mice also demonstrated that the expressions of CCL-20 and CCR6 were both downregulated significantly with SAA treatment. Furthermore, treatment of SAA inhibited the progression of the atherosclerotic plaques and lipid accumulation. CONCLUSIONS: These results demonstrate that TNF-alpha increased but SAA suppressed CCL-20 production significantly via a novel mechanism.

Description

Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation.

Keywords:

Salvianolic acid A,96574-01-5,Dan phenolic acid A,Natural Products, buy Salvianolic acid A , Salvianolic acid A supplier , purchase Salvianolic acid A , Salvianolic acid A cost , Salvianolic acid A manufacturer , order Salvianolic acid A , high purity Salvianolic acid A

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: