Products with
Anti-apoptotic bioactivity
Cat.No.
|
Product Name
|
BCN1067 |
Ginsenoside Rg2
|
Ginsenoside Rg2 has therapeutic potential for type 2 diabetic patients, it also may represent a potential neurorestorative treatment strategy for vascular dementia or other ischemic insults, has protective effects against H2O2-induced injury and apoptosis in H9c2 cells. Ginsenoside Rg2 suppresses the hepatic glucose production via AMPK-induced phosphorylation of GSK3β and induction of SHP gene expression, regulates the 5-HT3A receptors that are expressed in Xenopus oocytes, inhibits nicotinic acetylcholine receptor-mediated Na+ influx and channel activity. |
BCN1087 |
Saikosaponin C
|
Saikosaponin C exhibits anti-HBV activity, it has the potential for therapeutic angiogenesis but is not suitable for cancer therapy, it also might be a novel therapeutic tool for treating human AD and other neurodegenerative diseases. It inhibited caspase-3 activation and caspase-3-mediated-FAK degradation, induced matrix metalloproteinase-2 (MMP-2)、vascular endothelial growth factor (VEGF) 、the p42/p44 mitogen-activated protein kinase (MAPK, ERK). |
BCN1096 |
Phillyrin
|
Phillyrin is a novel AMPK activator, has anti-obesity effects in nutritive obesity mice,
it can prevent lipid accumulation in HepG2 cells by blocking the expression of SREBP-1c and FAS through LKB1/AMPK activation. Phillyrin may be a new preventive agent of acute lung injury in the clinical setting, it potentially contributes to the suppression of the activation of MAPK and NF-κB pathways, it also has protective effects on H2O2-induced oxidative stress and apoptosis in PC12 cells. |
BCN1097 |
Notoginsenoside R1
|
Notoginsenoside R1(NR1) is the main ingredient with cardiovascular activity in Panax notoginseng, which has some neuronal protective, antihypertensive,antioxidant, anti-inflammatory, antiapoptotic, and immune-stimulatory activities. NR1 can counteract endotoxin-induced activation of endothelial cells in vitro and endotoxin-induced lethality in mice in vivo. NR1 inhibits TNF-α-induced PAI-1 overexpression via extracellular signal-related kinases (ERK1/2) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways, it attenuates amyloid-β-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation. |
BCN1118 |
Tanshinone IIB
|
Co-treatment with Tanshinone IIB (TSB) significantly inhibits the DNA laddering, cytotoxicity and apoptosis of rat cortical neurons induced by staurosporine in a concentration-dependent manner; TSB also suppresses the elevated Bax protein and decreased bcl-2 and caspase-3 proteins induced by staurosporine in rat cortical neurons; TSB is effective in reducing stroke-induced brain damage and may represent a novel drug candidate for further development.
TSB significantly inhibits the uptake of digoxin and vinblastine in membrane vesicles containing PgP or MRP1, moderately stimulates PgP ATPase activity, suggesting TSB is a substrate for PgP and MRP1 and that drug resistance to TSB therapy and drug interactions may occur through PgP and MRP1 modulation. |