Cussosaponin C

CAS# 366814-42-8

Cussosaponin C

2D Structure

Catalog No. BCN2895----Order now to get a substantial discount!

Product Name & Size Price Stock
Cussosaponin C: 5mg Please Inquire In Stock
Cussosaponin C: 10mg Please Inquire In Stock
Cussosaponin C: 20mg Please Inquire Please Inquire
Cussosaponin C: 50mg Please Inquire Please Inquire
Cussosaponin C: 100mg Please Inquire Please Inquire
Cussosaponin C: 200mg Please Inquire Please Inquire
Cussosaponin C: 500mg Please Inquire Please Inquire
Cussosaponin C: 1000mg Please Inquire Please Inquire

Quality Control of Cussosaponin C

3D structure

Package In Stock

Cussosaponin C

Number of papers citing our products

Chemical Properties of Cussosaponin C

Cas No. 366814-42-8 SDF Download SDF
PubChem ID 10975293 Appearance Powder
Formula C59H96O25 M.Wt 1205.4
Type of Compound Triterpenoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name [(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl] (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-[(2S,3R,4S,5S)-4,5-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate
SMILES CC1C(C(C(C(O1)OC2C(OC(C(C2O)O)OCC3C(C(C(C(O3)OC(=O)C45CCC(C4C6CCC7C8(CCC(C(C8CCC7(C6(CC5)C)C)(C)C)OC9C(C(C(CO9)O)O)OC1C(C(C(C(O1)C)O)O)O)C)C(=C)C)O)O)O)CO)O)O)O
Standard InChIKey RLVCFPDMEANTCJ-BGVVGBMBSA-N
Standard InChI InChI=1S/C59H96O25/c1-23(2)26-12-17-59(54(74)84-52-45(72)41(68)38(65)30(80-52)22-76-49-46(73)42(69)47(29(20-60)79-49)82-50-43(70)39(66)35(62)24(3)77-50)19-18-57(8)27(34(26)59)10-11-32-56(7)15-14-33(55(5,6)31(56)13-16-58(32,57)9)81-53-48(37(64)28(61)21-75-53)83-51-44(71)40(67)36(63)25(4)78-51/h24-53,60-73H,1,10-22H2,2-9H3/t24-,25-,26-,27+,28-,29+,30+,31-,32+,33-,34+,35-,36-,37-,38+,39+,40+,41-,42+,43+,44+,45+,46+,47+,48+,49+,50-,51-,52-,53-,56-,57+,58+,59-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Cussosaponin C

The herb of Pulsatilla chinensis (Bge.) Regel

Protocol of Cussosaponin C

Structure Identification
Phytochemical Analysis, 2010, 21(4):314-321.

Quality Control of Pulsatilla koreana Based on the Simultaneous Determination of Triterpenoidal Saponins by HPLC-ELSD and Principal Component Analysis.[Reference: WebLink]

Pulsatilla koreana Nakai, with triterpenoidal saponins as its main pharmacological effective compounds, is known to have several biological activities, including hypoglycaemic, antitumour, cognition-enhancing, neuroprotective, cytotoxic and antiangiogenic activities. However, few analytical methods have been reported on the quality assessment of P. koreana roots. To establish a high-performance liquid chromatography coupled with evaporative light scattering detection for the simultaneous determination of five triterpenoidal saponins, including pulsatilloside E (1), pulsatilla saponin H (2), anemoside B4 (3), hederacolchiside E (4) and Cussosaponin C (5) in P. koreana.
METHODS AND RESULTS:
The chromatographic separation was performed on a Shiseido CapCell PAK C18 analytical column efficiently using gradient elution with acetonitrile and water. All calibration curves showed excellent linear regressions (R2 < 0.9996) within the range of tested concentrations. The intra- and inter-day variations were below 4.78% in terms of RSD. The recoveries were 94.82-102.97% with RSD of 0.27-3.92% for spiked P. koreana samples.
CONCLUSIONS:
The validated method was successfully used for the analysis of five saponins in P. koreana from different locations. Moreover, the different samples were clustered in accordance with contents of triterpenoidal saponins based on aglycon type by a principal component analysis.

CHEMICAL & PHARMACEUTICAL BULLETIN,2002,50(9):1290-3.

Cussosaponins A—E, Triterpene Saponins from the Leaves of Cussonia racemosa, a Malagasy Endemic Plant.[Reference: WebLink]


METHODS AND RESULTS:
Five new triterpene saponins, cussosaponin A (2), cussosaponin B (3), Cussosaponin C (4), cussosaponin D (5), and cussosaponin E (6), were isolated from the dried leaves of Cussonia racemosa BAKER. The structures of these new compounds were deduced on the basis of chemical and spectroscopic evidence.

Cussosaponin C Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Cussosaponin C Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Cussosaponin C

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 0.8296 mL 4.148 mL 8.296 mL 16.592 mL 20.74 mL
5 mM 0.1659 mL 0.8296 mL 1.6592 mL 3.3184 mL 4.148 mL
10 mM 0.083 mL 0.4148 mL 0.8296 mL 1.6592 mL 2.074 mL
50 mM 0.0166 mL 0.083 mL 0.1659 mL 0.3318 mL 0.4148 mL
100 mM 0.0083 mL 0.0415 mL 0.083 mL 0.1659 mL 0.2074 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Cussosaponin C

Epsilonproteobacterial hydroxylamine oxidoreductase (epsilonHao): characterization of a 'missing link' in the multihaem cytochrome c family.[Pubmed:28388834]

Mol Microbiol. 2017 Jul;105(1):127-138.

Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called epsilonHao proteins, have been predicted from the genomes of nitrate/nitrite-ammonifying bacteria that usually lack NrfA. Here, epsilonHao proteins from the host-associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep-sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as epsilonHao-maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao-typical absorbance maximum at 460 nm. In most cases, the epsilonHao-encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane-bound HaoCA assembly reminiscent of the menaquinol-oxidizing NrfHA complex. The results indicate that epsilonHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a 'missing link' in the evolution of NrfA and Hao enzymes.

Three new C-27-carboxylated-lupane-triterpenoid derivatives from Potentilla discolor Bunge and their in vitro antitumor activities.[Pubmed:28388692]

PLoS One. 2017 Apr 7;12(4):e0175502.

Three new lupane-triterpenoids (1-3) along with six known compounds (4-9) were isolated from the ethanolic extract of whole plant of Potentilla discolor Bunge. The structures of Compounds 1-3 were established by extensive 1D and 2D NMR together with other spectrum analysis, indicating that their C-27 positions were highly oxygenated, which were rarely found in nature. Their in vitro anti-proliferative activities against HepG-2, MCF-7 and T-84 cell lines were evaluated by Cell Counting Kit-8 (CCK-8) assay, and the results showed different activities for three cell lines with IC50 values ranging from 17.84 to 40.64 muM. In addition, the results from Hoechst 33258 and AO/EB staining as well as annexinV-FITC assays exhibited Compound 1 caused a markedly increased HepG-2 cellular apoptosis in a dose-dependent manner. The further mechanisms of Compound 1-induced cellular apoptosis were confirmed that 1 induced the production of ROS and the alteration of pro- and anti-apoptotic proteins, which led to the dysfunction of mitochondria and activation of caspase-9 and caspase-3 and finally caused cellular apoptosis. These results would be useful in search for new potential antitumor agents and for developing semisynthetic lupane-triterpenoid derivatives with high antitumor activity.

Salicylic acid peeling combined with vitamin C mesotherapy versus salicylic acid peeling alone in the treatment of mixed type melasma: A comparative study.[Pubmed:28388246]

J Cosmet Laser Ther. 2017 Oct;19(5):294-299.

INTRODUCTION: Melasma is a distressing condition for both dermatologists and patients. We evaluated the effectiveness of salicylic acid (SA) peel and vitamin C mesotherapy in the treatment of melasma. MATERIALS AND METHODS: Fifty female patients were divided into two groups. All patients were treated with 30% SA peel every two weeks for two months. In addition, after SA peeling Group A was intradermally administered 10 vitamin C on the melasma lesion at 1-cm intervals. All patients were followed up for 6 months, during which the recurrence rates were evaluated. Digital photographs of the melasma site were taken and patients' Melasma Area and Severity Index (MASI) scores were assessed. After the treatment, the patients were asked to complete the melasma quality of life questionnaire (MelasQoL) to evaluate their satisfaction with the treatment. All the adverse effects were noted. RESULTS: The MelasQoL and MASI scores of patients in both groups significantly decreased after the treatment. Apart from a burning sensation, no adverse event was observed and all patients tolerated the treatment well. DISCUSSION: SA peel combined with vitamin C mesotherapy is a safe and effective alternative for the treatment of melasma with no significant side effects and minimal downtime.

The vitamin D receptor functional variant rs2228570 (C>T) does not associate with type 2 diabetes mellitus.[Pubmed:28388281]

Endocr Res. 2017 Nov;42(4):331-335.

AIM: Vitamin D acts through the binding to the vitamin D receptor (VDR). Several polymorphisms in VDR gene have been studied. Among these, the rs2228570 C>T (FokI) variant has been demonstrated to be functional, leading to a protein with a different size and activity. So far, genetic studies on the association between VDR gene rs2228570 single nucleotide polymorphism (SNP) and type 2 diabetes mellitus (T2DM) showed contradictory results. Thus, we performed an association study in a large cohort of adult Italian subjects with T2DM and in nondiabetic controls. MATERIALS AND METHODS: For this study, 1713 subjects, 883 T2DM patients and 830 controls, were genotyped for the polymorphism. All participants without a diagnosis of diabetes underwent oral glucose tolerance test (OGTT), with measurement of glucose and insulin levels. Indices of insulin resistance (Homeostatic model assessment of insulin resistance, insulin sensitivity index), secretion (homeostatic model assessment for beta-cell, corrected insulin response at 30 minutes) and disposition index were calculated. RESULTS: Genotype distributions and allele frequencies did not show difference between T2DM subjects and controls. We did not find significant differences among the three genotypes regarding gender, age, BMI, waist, hip, waist-to-hip ratio, and blood pressure. There were also no significant differences in lipid parameters, aspartate aminotransferase, and alanine aminotransferase levels. We tested for association with OGTT-derived data and surrogate indices of insulin resistance and secretion. We did not find significant differences among the genotypes in any of above-mentioned parameters. Furthermore, vitamin D levels were measured in a subgroup of subjects. We did not find significant differences among the genotypes. CONCLUSIONS: Our study does not provide evidence for the association of the rs2228570 polymorphism with T2DM in a Caucasian population.

Keywords:

Cussosaponin C,366814-42-8,Natural Products, buy Cussosaponin C , Cussosaponin C supplier , purchase Cussosaponin C , Cussosaponin C cost , Cussosaponin C manufacturer , order Cussosaponin C , high purity Cussosaponin C

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: