DihydrocurcuminCAS# 76474-56-1 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 76474-56-1 | SDF | Download SDF |
PubChem ID | 10429233 | Appearance | Powder |
Formula | C21H22O6 | M.Wt | 370.40 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Synonyms | letestuianin B | ||
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-1-ene-3,5-dione | ||
SMILES | COC1=C(C=CC(=C1)CCC(=O)CC(=O)C=CC2=CC(=C(C=C2)O)OC)O | ||
Standard InChIKey | MUYJSOCNDLUHPJ-XVNBXDOJSA-N | ||
Standard InChI | InChI=1S/C21H22O6/c1-26-20-11-14(5-9-18(20)24)3-7-16(22)13-17(23)8-4-15-6-10-19(25)21(12-15)27-2/h3,5-7,9-12,24-25H,4,8,13H2,1-2H3/b7-3+ | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Dihydrocurcumin is an intermediate product converted from curcumin. |
In vitro | Degradation of curcuminoids by in vitro pure culture fermentation.[Pubmed: 25317751]J Agric Food Chem. 2014 Nov 12;62(45):11005-15.Colonic bacteria may mediate the transformation of curcuminoids, but studies of this metabolism are limited. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism.[Pubmed: 21467222]Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6615-20.Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. |
Kinase Assay | Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin.[Pubmed: 15356994]Arch Pharm Res. 2004 Jul;27(7):683-92.Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C (PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and IkappaB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)kappaB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. |
Dihydrocurcumin Dilution Calculator
Dihydrocurcumin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.6998 mL | 13.4989 mL | 26.9978 mL | 53.9957 mL | 67.4946 mL |
5 mM | 0.54 mL | 2.6998 mL | 5.3996 mL | 10.7991 mL | 13.4989 mL |
10 mM | 0.27 mL | 1.3499 mL | 2.6998 mL | 5.3996 mL | 6.7495 mL |
50 mM | 0.054 mL | 0.27 mL | 0.54 mL | 1.0799 mL | 1.3499 mL |
100 mM | 0.027 mL | 0.135 mL | 0.27 mL | 0.54 mL | 0.6749 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Morachalcone A
Catalog No.:BCN4311
CAS No.:76472-88-3
- Kuwanon H
Catalog No.:BCN2945
CAS No.:76472-87-2
- Effusanin B
Catalog No.:BCN3391
CAS No.:76470-16-1
- Effusanin E
Catalog No.:BCN3234
CAS No.:76470-15-0
- Cesium chloride
Catalog No.:BCC2399
CAS No.:7647-17-8
- Sodium chloride
Catalog No.:BCC7580
CAS No.:7647-14-5
- Dihydroxyaflavinine
Catalog No.:BCN7387
CAS No.:76410-56-5
- Euphorbia factor Ti2
Catalog No.:BCN3782
CAS No.:64180-96-7
- (1S)-(+)-Menthyl chloroformate
Catalog No.:BCN4972
CAS No.:7635-54-3
- Latrunculin A
Catalog No.:BCC7830
CAS No.:76343-93-6
- DL-AP5
Catalog No.:BCC6552
CAS No.:76326-31-3
- Sodium Nitrite
Catalog No.:BCC4723
CAS No.:7632-00-0
- Galeopsin
Catalog No.:BCN7358
CAS No.:76475-16-6
- Croverin
Catalog No.:BCN2518
CAS No.:76475-17-7
- 8-Acetoxy-15,16-epoxy-8,9-secolabda-13(16),14-diene-7,9-dione
Catalog No.:BCN7409
CAS No.:76475-32-6
- Ligustrazine Hydrochloride
Catalog No.:BCN1009
CAS No.:76494-51-4
- 15,16-Dinor-8(17),11-labdadien-13-one
Catalog No.:BCN4312
CAS No.:76497-69-3
- 10-Hydroxy-2-decenoic acid
Catalog No.:BCN2654
CAS No.:765-01-5
- 1-2-Cyclohexanedione
Catalog No.:BCN2265
CAS No.:765-87-7
- Heraclenol 3'-O-[beta-D-apiofuranosyl-(1-6)-beta-D-glucopyranoside]
Catalog No.:BCN1362
CAS No.:765316-44-7
- SR 202
Catalog No.:BCC7243
CAS No.:76541-72-5
- Divalproex Sodium
Catalog No.:BCC4379
CAS No.:76584-70-8
- OR-486
Catalog No.:BCC5661
CAS No.:7659-29-2
- 3-Ethyl-4-methyl-3-pyrrolin-2-one
Catalog No.:BCC8632
CAS No.:766-36-9
Formation of tetrahydrocurcumin by reduction of curcumin with cultured plant cells of Marchantia polymorpha.[Pubmed:22574459]
Nat Prod Commun. 2012 Apr;7(4):529-30.
Cultured plant cells of Marchantia polymorpha, Nicotiana tabacum, Phytolacca americana, Catharanthus roseus, and Gossypium hirsutum were examined for their ability to reduce curcumin. Only M. polymorpha cells converted curcumin into tetrahydrocurcumin in 90% yield in one day. Time-course experiment revealed a two-step formation of tetrahydrocurcumin via Dihydrocurcumin.
Degradation of curcuminoids by in vitro pure culture fermentation.[Pubmed:25317751]
J Agric Food Chem. 2014 Nov 12;62(45):11005-15.
Colonic bacteria may mediate the transformation of curcuminoids, but studies of this metabolism are limited. Here, the metabolism of curcuminoids by Escherichia fergusonii (ATCC 35469) and two Escherichia coli strains (ATCC 8739 and DH10B) was examined in modified medium for colon bacteria (mMCB) with or without pig cecal fluid. LC-MS analysis showed that 16-37% of curcumin, 6-16% of demethoxycurcumin (DMC) and 7-15% of bis-demethoxycurcumin (Bis-DMC), and 7-15% of bis-demethoxycurcumin (Bis-DMC) were converted following 36 h of fermentation, with the amount of curcuminoids degraded varying depending on the bacterial strain and medium used. Three metabolites (Dihydrocurcumin (DHC), tetrahydrocurcumin (THC), and ferulic acid (FA)) were found in fermentation cultures with all strains used. In addition, a compound with m/z [M - H](-) 470 was found and identified to be a curcumin adduct (curcumin-l-cysteine), using accurate mass FT-ICR-MS. This study provides insights into the bacterial metabolism of curcuminoids.
Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin.[Pubmed:15356994]
Arch Pharm Res. 2004 Jul;27(7):683-92.
Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C (PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and IkappaB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)kappaB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction pathways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins play a pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to Dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, Dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.
Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism.[Pubmed:21467222]
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6615-20.
Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli was able to act on curcumin. The curcumin-converting enzyme was purified from E. coli and characterized. The native enzyme had a molecular mass of about 82 kDa and consisted of two identical subunits. The enzyme has a narrow substrate spectrum, preferentially acting on curcumin. The microbial metabolism of curcumin by the purified enzyme was found to comprise a two-step reduction, curcumin being converted NADPH-dependently into an intermediate product, Dihydrocurcumin, and then the end product, tetrahydrocurcumin. We named this enzyme "NADPH-dependent curcumin/Dihydrocurcumin reductase" (CurA). The gene (curA) encoding this enzyme was also identified. A homology search with the BLAST program revealed that a unique enzyme involved in curcumin metabolism belongs to the medium-chain dehydrogenase/reductase superfamily.