Fmoc-Cys(Acm)-OHCAS# 86060-81-3 |
- PF-4708671
Catalog No.:BCC5031
CAS No.:1255517-76-0
- BIX 02565
Catalog No.:BCC4303
CAS No.:1311367-27-7
- BI-D1870
Catalog No.:BCC5030
CAS No.:501437-28-1
- CMK
Catalog No.:BCC1489
CAS No.:821794-90-5
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 86060-81-3 | SDF | Download SDF |
PubChem ID | 128799 | Appearance | Powder |
Formula | C21H22N2O5S | M.Wt | 414.5 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2R)-3-(acetamidomethylsulfanyl)-2-(9H-fluoren-9-ylmethoxycarbonylamino)propanoic acid | ||
SMILES | CC(=O)NCSCC(C(=O)O)NC(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13 | ||
Standard InChIKey | CSMYOORPUGPKAP-IBGZPJMESA-N | ||
Standard InChI | InChI=1S/C21H22N2O5S/c1-13(24)22-12-29-11-19(20(25)26)23-21(27)28-10-18-16-8-4-2-6-14(16)15-7-3-5-9-17(15)18/h2-9,18-19H,10-12H2,1H3,(H,22,24)(H,23,27)(H,25,26)/t19-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Fmoc-Cys(Acm)-OH Dilution Calculator
Fmoc-Cys(Acm)-OH Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.4125 mL | 12.0627 mL | 24.1255 mL | 48.2509 mL | 60.3136 mL |
5 mM | 0.4825 mL | 2.4125 mL | 4.8251 mL | 9.6502 mL | 12.0627 mL |
10 mM | 0.2413 mL | 1.2063 mL | 2.4125 mL | 4.8251 mL | 6.0314 mL |
50 mM | 0.0483 mL | 0.2413 mL | 0.4825 mL | 0.965 mL | 1.2063 mL |
100 mM | 0.0241 mL | 0.1206 mL | 0.2413 mL | 0.4825 mL | 0.6031 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Fmoc-Cys(Acm)-OH
- AZD7762
Catalog No.:BCC2555
CAS No.:860352-01-8
- Cyclovirobuxine
Catalog No.:BCN5965
CAS No.:860-79-7
- Benzoyleneurea
Catalog No.:BCC8865
CAS No.:86-96-4
- Carbazole
Catalog No.:BCN6903
CAS No.:86-74-8
- Anemosapogenin
Catalog No.:BCN2454
CAS No.:85999-40-2
- BMS-690514
Catalog No.:BCC1430
CAS No.:859853-30-8
- FIT
Catalog No.:BCC7082
CAS No.:85951-63-9
- GR 125487 sulfamate
Catalog No.:BCC7142
CAS No.:859502-43-5
- AGN 205728
Catalog No.:BCC5418
CAS No.:859498-05-8
- Acetyl meldrum's acid
Catalog No.:BCC8805
CAS No.:85920-63-4
- 4-O-Methylhonokiol
Catalog No.:BCN8474
CAS No.:68592-15-4
- 6-Iodonordihydrocapsaicin
Catalog No.:BCC5860
CAS No.:859171-97-4
- Fmoc-Lys(Z)-OH
Catalog No.:BCC3525
CAS No.:86060-82-4
- Fmoc-Asp-OBzl
Catalog No.:BCC3087
CAS No.:86060-83-5
- Fmoc-Gly-OPfp
Catalog No.:BCC3499
CAS No.:86060-85-7
- Fmoc-Ala-OPfp
Catalog No.:BCC3035
CAS No.:86060-86-8
- Fmoc-Val-OPfp
Catalog No.:BCC3571
CAS No.:86060-87-9
- Fmoc-Leu-OPfp
Catalog No.:BCC3510
CAS No.:86060-88-0
- Fmoc-Ile-OPfp
Catalog No.:BCC3506
CAS No.:86060-89-1
- Fmoc-Pro-OPfp
Catalog No.:BCC3539
CAS No.:86060-90-4
- Fmoc-Phe-OPfp
Catalog No.:BCC3536
CAS No.:86060-92-6
- Fmoc-Tyr(tBu)-OPfp
Catalog No.:BCC3568
CAS No.:86060-93-7
- Fmoc-Met-OPfp
Catalog No.:BCC3529
CAS No.:86060-94-8
- Fmoc-Cys(Acm)-OPfp
Catalog No.:BCC3474
CAS No.:86060-96-0
A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications.[Pubmed:24055806]
Peptides. 2013 Nov;49:145-58.
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named alpha-conotoxin TxIC. We assign this conopeptide to the 4/7 alpha-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, alpha-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 muM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)alpha-conotoxin TxIC, demonstrates differential selectivity for the alpha3beta2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 +/- 0.5 muM. Interestingly its comparative PD50 (3.6 muMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating alpha-conotoxin TxIC from other alpha-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of gamma-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of alpha-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.
The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.[Pubmed:2577698]
Pept Res. 1989 Jan-Feb;2(1):147-52.
Fmoc-Cys(t-Bu)-OH, Fmoc-Cys(Acm)-OH, and Fmoc-Cys(Trt)-OH exhibit excellent synthesis characteristics when used in Fmoc solid phase peptide synthesis on the Applied Biosystems Model 431A peptide synthesizer. The actual 5% scavenger mixture will vary according to the particular amino acid residues present. As was previously mentioned, an anisole/ethanedithiol/ethylmethylsulfide mixture (3:1:1) works well as a general scavenger solution for TFA cleavage of Fmoc synthesized peptide resins. It also may be possible to use lower acid (TFA) concentrations. The syntheses and workups of the peptide Somatostatin utilizing these derivatives demonstrate the ease of using these cysteine derivatives with the Fmoc chemistry approach. The use of either the t-Bu or the Acm moiety produces a peptide containing protected thiol groups after cleavage with 95% TFA. The Fmoc-Cys(Trt)-OH derivative is efficiently deprotected using 95% TFA. This investigation should provide further insight into synthesis options and cleavage protocols when working with cysteine-containing peptides.