CMKRSK2 kinase inhibitor CAS# 821794-90-5 |
- PF-4708671
Catalog No.:BCC5031
CAS No.:1255517-76-0
- BIX 02565
Catalog No.:BCC4303
CAS No.:1311367-27-7
- BI-D1870
Catalog No.:BCC5030
CAS No.:501437-28-1
- FMK
Catalog No.:BCC1580
CAS No.:821794-92-7
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 821794-90-5 | SDF | Download SDF |
PubChem ID | 16663089 | Appearance | Powder |
Formula | C18H19ClN4O2 | M.Wt | 358.83 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : 150 mg/mL (418.04 mM; Need ultrasonic) | ||
Chemical Name | 1-[4-amino-7-(3-hydroxypropyl)-5-(4-methylphenyl)pyrrolo[2,3-d]pyrimidin-6-yl]-2-chloroethanone | ||
SMILES | CC1=CC=C(C=C1)C2=C(N(C3=C2C(=NC=N3)N)CCCO)C(=O)CCl | ||
Standard InChIKey | PELFTNQHGSITLB-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C18H19ClN4O2/c1-11-3-5-12(6-4-11)14-15-17(20)21-10-22-18(15)23(7-2-8-24)16(14)13(25)9-19/h3-6,10,24H,2,7-9H2,1H3,(H2,20,21,22) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | CMK is a RSK2 kinase inhibitor, used for cancer treatment.In Vitro:CMK inhibits the growth of Cdc5 (L158G) with IC50 of 36 nM, greater than 30 μM for wild type Cdc5. CMK exhibits a concentration-dependent first cell cycle mitotic arrest in the cdc5-as1 strain with an IC50 of 1.1 μM. CMK inhibition of Cdc5 (L158G) leads to a first cell cycle anaphase arrest and delay in anaphase spindle migration[1]. References: |
CMK Dilution Calculator
CMK Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.7868 mL | 13.9342 mL | 27.8683 mL | 55.7367 mL | 69.6709 mL |
5 mM | 0.5574 mL | 2.7868 mL | 5.5737 mL | 11.1473 mL | 13.9342 mL |
10 mM | 0.2787 mL | 1.3934 mL | 2.7868 mL | 5.5737 mL | 6.9671 mL |
50 mM | 0.0557 mL | 0.2787 mL | 0.5574 mL | 1.1147 mL | 1.3934 mL |
100 mM | 0.0279 mL | 0.1393 mL | 0.2787 mL | 0.5574 mL | 0.6967 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
CMK is a RSK2 kinase inhibitor.
- JNJ 17203212
Catalog No.:BCC7668
CAS No.:821768-06-3
- NSC 33994
Catalog No.:BCC2441
CAS No.:82058-16-0
- Loteprednol etabonate
Catalog No.:BCC4916
CAS No.:82034-46-6
- Boc-Leucinol
Catalog No.:BCC2724
CAS No.:82010-31-9
- 10Z-Hymenialdisine
Catalog No.:BCC5773
CAS No.:82005-12-7
- Daurichromenic acid
Catalog No.:BCN4355
CAS No.:82003-90-5
- 8-Anilino-1-naphthalenesulfonic acid
Catalog No.:BCC8785
CAS No.:82-76-8
- Peri acid
Catalog No.:BCC9116
CAS No.:82-75-7
- Visnagin
Catalog No.:BCN4367
CAS No.:82-57-5
- 1-Amino-2-methylanthraquinone
Catalog No.:BCC8451
CAS No.:82-28-0
- Alpha-Toxicarol
Catalog No.:BCN6467
CAS No.:82-09-7
- Rottlerin
Catalog No.:BCC7127
CAS No.:82-08-6
- FMK
Catalog No.:BCC1580
CAS No.:821794-92-7
- Andropanoside
Catalog No.:BCN4570
CAS No.:82209-72-1
- Andrographiside
Catalog No.:BCN4569
CAS No.:82209-76-5
- Atomoxetine HCl
Catalog No.:BCC5046
CAS No.:82248-59-7
- Impurity C of Alfacalcidol
Catalog No.:BCC5385
CAS No.:82266-85-1
- Breyniaionoside A
Catalog No.:BCN7112
CAS No.:823182-23-6
- Styraxlignolide F
Catalog No.:BCN3416
CAS No.:823214-06-8
- SN 2
Catalog No.:BCC6325
CAS No.:823218-99-1
- Coelonin
Catalog No.:BCN3600
CAS No.:82344-82-9
- Heliocoromandaline
Catalog No.:BCN2046
CAS No.:82354-33-4
- Heliocurassavicine
Catalog No.:BCN2049
CAS No.:82354-34-5
- Humantenmine
Catalog No.:BCN4357
CAS No.:82354-38-9
Application of response surface methodology for optimization of trace amount of diazinon preconcentration in natural waters and biological samples by carbon mesoporous CMK-3.[Pubmed:27770444]
Biomed Chromatogr. 2017 May;31(5).
Preconcentration of trace amounts of diazinon by carbon mesoporous CMK-3 in water and biological samples and measurement by high-performance liquid chromatography were investigated. CMK-3 was prepared using hexagonal SBA-15 as the template. The synthesized materials were characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy, Brunaur-Emmet-Teller, transmission electron microscopy and Boehm titration method. The preconcentration procedure was optimized using a multivariate optimization approach following a two-stage process. The effect of analytical parameters including the amount of the CMK-3 as an adsorbent, pH, type and volume of eluent and flow rate of eluent and sample were studied by a screening project, then the effective parameters were optimized by response surface methodology based on central composite design. The average extraction efficiency of diazinon under optimal conditions (CMK-3 dosage = 25 mg, sample flow rate = 2.5 mL min(-1) , eluent flow rate = 1.25 mL min(-1) , volume of methanol as an eluent =3.5 mL and initial pH = 6) was 97.11%, which agrees well with the predicted response value (97.93%). The linearity of the method was in the range of 0.5-100 mug L(-1) with a correlation coefficient of 0.997. Enrichment factor, limit of detection and limit of quantification were 285.7, 0.09 and 0.23 mug L(-1) , respectively. The relative standard deviation (RSD) under optimum conditions was 2.21% (n = 5). The proposed method was applied to determine diazinon in real water and biological samples. Recovery of diazinon from real samples was between 95.80 and 104.94% with an RSD of 0.19-4.65%. Thus, this method is suitable for the preconcentration and determination of diazinon in real water and biological samples.
[Caspase1 Inhibitor Ac-YVAD-CMK Prevents and Treats the Acute Graft Versus Host Disease in Mice].[Pubmed:28245402]
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2017 Feb;25(1):203-208.
OBJECTIVE: To explore the effect of Caspase 1 inhibitor Ac-YVAD-CMK on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation(allo-HSCT) and its mechanism. METHODS: Experiments were divided randomly into 3 groups: allogeneic hematopoietic stem cell transplantation combined with splenic cell infusion group (TS group, n=12), allogeneic hematopoietic stem cell transplantation combined with splenic cell infusion plus injection of low dose Caspase 1 inhibitor group (TS+low dose of C group, n=16) and plus high dose Caspase1 inhibitor (TS+high dose of C group, n=19). The body weight of mice in each group was dynamically detected, and the clinical manifestation of GVHD and score of aGVHD were determined, and the chimerism rate of mice was detected after transplantation for 14 days. Th1, Th2 and Th17 cells in peripheral blood were examined by flow cytometry. Peripheral proinflammatory cytokines IL-1beta, IFN-gamma, IL-1alpha and IL-18 were examined by enzyme-linked immunosorbent assay(ELISA). The tissues sections of GVHD target organs (liver, lung, colon and skin) were stained with HE for histopathologic examination and histopathologic score. RESULTS: Ac-YVAD-CMK could alleviate murine aGVHD and pathological injury, decreare the incidence and severity of aGVHD in recipient mice. The detection of Th cell subsets in peripheral blood by flow cytometry showed that compared with TS group, the Th1 cell ratio in TS+low dose of C and TS+high dose of C groups was significantly reduced (P<0.05), while the Th2 and Th17 cell ratio was significantly enhanced (P<0.05) in TS+low dose of high dose of C groups. The detection of peripheral inflamematory cytokines by ELISA demonstrated that the inflammatory cytokines including IL-1beta,IFN-gamma,IL-18 and IL-1alpha were reduced significantly (P<0.05). CONCLUSION: Ac-YVAD-CMK can improve aGVHD by inhibiting Caspase 1 and reducing the release of some inflammatory cytokines, thereby alleviated the aGVHD pathological damage.
Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection.[Pubmed:28335979]
Anal Chim Acta. 2017 Apr 22;963:83-92.
We report a hybrid glass-poly (dimethylsiloxane) microfluidic immunosensor for epidermal growth factor receptor (EGFR) determination, based on the covalent immobilization of anti-EGFR antibody (anti-EGFR) on amino-functionalized mesoporous silica (AMS) retained in the central channel of a microfluidic device. The synthetized AMS was characterized by N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and infrared spectroscopy. The cancer biomarker was quantified in human serum samples by a direct sandwich immunoassay measuring through a horseradish peroxidase-conjugated anti-EGFR. The enzymatic product was detected at -100 mV by amperometry on a sputtering gold electrode, modified with an ordered mesoporous carbon (CMK-3) in a matrix of poly-acrylamide-co-methacrylate of dihydrolipoic acid (poly(AC-co-MDHLA)) through in situ copolymerization. CMK-3/poly(AC-co-MDHLA)/gold was characterized by cyclic voltammetry, EDS and SEM. The measured current was directly proportional to the level of EGFR in human serum samples. The linear range was from 0.01 ng mL(-1) to 50 ng mL(-1). The detection limit was 3.03 pg mL(-1), and the within- and between-assay coefficients of variation were below 5.20%. The microfluidic immunosensor is a very promising device for the diagnosis of several kinds of epithelial origin carcinomas.
Molecular Modeling and Adsorption Properties of Ordered Silica-Templated CMK Mesoporous Carbons.[Pubmed:28165248]
Langmuir. 2017 Mar 7;33(9):2109-2121.
Realistic molecular models of silica-templated CMK-1, CMK-3, and CMK-5 carbon materials have been developed by using carbon rods and carbon pipes that were obtained by adsorbing carbon in a model MCM-41 pore. The interactions between the carbon atoms with the silica matrix were described using the PN-Traz potential, and the interaction between the carbon atoms was calculated by the reactive empirical bond order (REBO) potential. Carbon rods and pipes with different thicknesses were obtained by changing the silica-carbon interaction strength, the temperature, and the chemical potential of carbon vapor adsorption. These equilibrium structures were further used to obtain the atomic models of CMK-1, CMK-3, and CMK-5 materials using the same symmetry as found in TEM pictures. These models are further refined and made more realistic by adding interconnections between the carbon rods and carbon pipes. We calculated the geometric pore size distribution of the different models of CMK-5 and found that the presence of interconnections results in some new features in the pore size distribution. Argon adsorption properties were investigated using GCMC simulations to characterize these materials at 77 K. We found that the presence of interconnection results greatly improves the agreement with available experimental data by shifting the capillary condensation to lower pressures. Adding interconnections also induces smoother adsorption/condensation isotherms, and desorption/evaporation curves show a sharp jump. These features reflex the complexity of the nanovoids in CMKs in terms of their pore morphology and topology.