H-Thr(tBu)-OH

CAS# 4378-13-6

H-Thr(tBu)-OH

Catalog No. BCC3106----Order now to get a substantial discount!

Product Name & Size Price Stock
H-Thr(tBu)-OH: 5mg $6 In Stock
H-Thr(tBu)-OH: 10mg Please Inquire In Stock
H-Thr(tBu)-OH: 20mg Please Inquire Please Inquire
H-Thr(tBu)-OH: 50mg Please Inquire Please Inquire
H-Thr(tBu)-OH: 100mg Please Inquire Please Inquire
H-Thr(tBu)-OH: 200mg Please Inquire Please Inquire
H-Thr(tBu)-OH: 500mg Please Inquire Please Inquire
H-Thr(tBu)-OH: 1000mg Please Inquire Please Inquire

Quality Control of H-Thr(tBu)-OH

Number of papers citing our products

Chemical structure

H-Thr(tBu)-OH

3D structure

Chemical Properties of H-Thr(tBu)-OH

Cas No. 4378-13-6 SDF Download SDF
PubChem ID 6951357 Appearance Powder
Formula C8H17NO3 M.Wt 175.2
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (2S,3R)-2-amino-3-[(2-methylpropan-2-yl)oxy]butanoic acid
SMILES CC(C(C(=O)O)N)OC(C)(C)C
Standard InChIKey NMJINEMBBQVPGY-RITPCOANSA-N
Standard InChI InChI=1S/C8H17NO3/c1-5(6(9)7(10)11)12-8(2,3)4/h5-6H,9H2,1-4H3,(H,10,11)/t5-,6+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

H-Thr(tBu)-OH Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

H-Thr(tBu)-OH Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of H-Thr(tBu)-OH

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 5.7078 mL 28.5388 mL 57.0776 mL 114.1553 mL 142.6941 mL
5 mM 1.1416 mL 5.7078 mL 11.4155 mL 22.8311 mL 28.5388 mL
10 mM 0.5708 mL 2.8539 mL 5.7078 mL 11.4155 mL 14.2694 mL
50 mM 0.1142 mL 0.5708 mL 1.1416 mL 2.2831 mL 2.8539 mL
100 mM 0.0571 mL 0.2854 mL 0.5708 mL 1.1416 mL 1.4269 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on H-Thr(tBu)-OH

H-Thr(tBu)-OH

Featured Products
New Products
 

References on H-Thr(tBu)-OH

N alpha-trifluoroacetylation of N-terminal hydroxyamino acids: a new side reaction in peptide synthesis.[Pubmed:1450523]

Pept Res. 1992 Sep-Oct;5(5):287-92.

In the synthesis of the double-chain bis-cystinyl hinge fragment 225-232/225'-232' of the human IgG1, which contains two N-terminal threonine residues, the final acidolytic deprotection step, with 99% aqueous trifluoroacetic acid, was accompanied by formation of remarkable amounts of an unknown side product. This has been identified as the N alpha-mono-trifluoroacetylated product; however, even bis-trifluoroacetylation was found to occur by prolonged exposure of the parallel dimer to the reaction medium. Similarly, the model compounds H-Thr(tBu)-Phe-OH, [Boc-Thr(tBu)-Cys-OH]2 and Boc-Thr(tBu)-Cys(StBu)-Ala-OH were acylated by treatment with trifluoroacetic acid at rates that suggest a rather pronounced sequence dependency. Since, on the other hand, the model compound [Boc-Ala-Cys-OH]2 was not trifluoroacetylated at all under identical conditions, the reaction has to proceed prevalently via intermediate formation of the trifluoroacetyl ester of N-terminal hydroxyamino acids, followed by O-->N shift according to the hydroxyoxazolidine mechanism. The experimental data indicate also that under favored conditions aminolysis of the trifluoroacetyl ester via an inter- or intramolecular pathway may contribute to the overall reaction rate.

Sequence-assisted peptide synthesis (SAPS).[Pubmed:9924991]

J Pept Res. 1998 Dec;52(6):470-6.

In solid-phase peptide synthesis (SPPS) the growing peptide chain may undergo chain aggregation which can cause serious synthetic problems. A number of investigations concerning this problem have been reported in the chemical literature. During a study of such "difficult sequences" using the Fmoc-protection strategy, we have observed that peptide-chain aggregation may be significantly reduced when certain amino acid sequences are incorporated C-terminally (1). Thus, synthesis of the difficult poly-alanine, (Ala)n, sequence (n < or = 20) has been investigated with (Lys(Boc))m (m < or = 6) and (Glu(tBu))m (m > or = 6) as pre-sequences. With m > or = 3, peptides are obtained as single, homogeneous products while a complex mixture of deletion peptides and corresponding Fmoc-protected peptides is formed (n > or = 6) without the pre-sequence. A mixed pre-sequence, (Lys(Boc)Glu(tBu))3, has a similar favorable effect on the synthetic results, but the positive effect seems confined to a rather narrow framework of amino acids and side-chain protecting groups in the pre-sequence as discussed in the article. Among other reputedly difficult sequences the synthesis of H-(Thr-Val)5-OH, H-Val-Asn-Val-Asn-Val-Gln-Val-Gln-Val-Asp-OH, the Acyl Carrier Protein (65-74) and the human insulin B-chain has been investigated. In all cases introduction of a pre-sequence gives rise to satisfactory synthetic results. In the latter case, the lysine pre-sequence may be cleaved enzymatically to give the desB30 insulin B-chain. NIR-FT Raman studies of the synthesis of the poly-alanine, (Ala)n, sequences have shown that the pre-sequence (Lys(Boc))6 shifts the conformation of the growing peptide chain from a beta-structure (n > or = 6) to a random coil conformation (1c). This result is in agreement with the general observation that SPPS proceeds optimally under random coil conditions.

Keywords:

H-Thr(tBu)-OH,4378-13-6,Natural Products,Amino Acids and Derivatives, buy H-Thr(tBu)-OH , H-Thr(tBu)-OH supplier , purchase H-Thr(tBu)-OH , H-Thr(tBu)-OH cost , H-Thr(tBu)-OH manufacturer , order H-Thr(tBu)-OH , high purity H-Thr(tBu)-OH

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: