IsosilychristinCAS# 77182-66-2 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 77182-66-2 | SDF | Download SDF |
PubChem ID | 14849116 | Appearance | Powder |
Formula | C25H22O10 | M.Wt | 482.4 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 3,5,7-trihydroxy-2-[7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-4-yl]-2,3-dihydrochromen-4-one | ||
SMILES | COC1=C(C=CC(=C1)C2C(C3=C(C=CC(=C3O2)O)C4C(C(=O)C5=C(C=C(C=C5O4)O)O)O)CO)O | ||
Standard InChIKey | QYCJAWYDGRZSTO-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C25H22O10/c1-33-17-6-10(2-4-14(17)28)23-13(9-26)19-12(3-5-15(29)25(19)35-23)24-22(32)21(31)20-16(30)7-11(27)8-18(20)34-24/h2-8,13,22-24,26-30,32H,9H2,1H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Isosilychristin Dilution Calculator
Isosilychristin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.073 mL | 10.3648 mL | 20.7297 mL | 41.4594 mL | 51.8242 mL |
5 mM | 0.4146 mL | 2.073 mL | 4.1459 mL | 8.2919 mL | 10.3648 mL |
10 mM | 0.2073 mL | 1.0365 mL | 2.073 mL | 4.1459 mL | 5.1824 mL |
50 mM | 0.0415 mL | 0.2073 mL | 0.4146 mL | 0.8292 mL | 1.0365 mL |
100 mM | 0.0207 mL | 0.1036 mL | 0.2073 mL | 0.4146 mL | 0.5182 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Hydroxytyrosol 1-O-glucoside
Catalog No.:BCN0732
CAS No.:76873-99-9
- Wallicoside
Catalog No.:BCN0731
CAS No.:88797-59-5
- Securisteroside
Catalog No.:BCN0730
CAS No.:54964-57-7
- Byzantionoside B
Catalog No.:BCN0729
CAS No.:189109-45-3
- Grasshopper ketone
Catalog No.:BCN0728
CAS No.:41703-38-2
- Cannabisin E
Catalog No.:BCN0727
CAS No.:
- Bisdemethoxyboehmenan
Catalog No.:BCN0726
CAS No.:146918-26-5
- 6-Hydroxyisosativan
Catalog No.:BCN0725
CAS No.:2172624-69-8
- Erythrinin F
Catalog No.:BCN0724
CAS No.:1616592-60-9
- Derrisisoflavone I
Catalog No.:BCN0723
CAS No.:2172624-66-5
- Derrisisoflavone K
Catalog No.:BCN0722
CAS No.:2172624-68-7
- Derrisisoflavone H
Catalog No.:BCN0721
CAS No.:2172624-65-4
- Bocconoline
Catalog No.:BCN0734
CAS No.:32906-88-0
- 3-O-Methylellagic acid 3'-O-alpha-rhamnopyranoside
Catalog No.:BCN0735
CAS No.:352280-34-3
- Yinxiancaoside C
Catalog No.:BCN0736
CAS No.:1159908-74-3
- Methylpicraquassioside B
Catalog No.:BCN0737
CAS No.:1443757-89-8
- Methyl 2-hydroxy-3,4-dimethoxybenzoate
Catalog No.:BCN0738
CAS No.:6395-23-9
- 3'-O-Methylviolanone
Catalog No.:BCN0739
CAS No.:56973-42-3
- Lariciresinol 4-O-glucoside
Catalog No.:BCN0740
CAS No.:143663-00-7
- 10-O-trans-p-coumaroylscandoside
Catalog No.:BCN0741
CAS No.:870785-25-4
- Cuneataside C
Catalog No.:BCN0742
CAS No.:871720-16-0
- 5,6,7,3',4',5'-Hexamethoxyflavanone
Catalog No.:BCN0743
CAS No.:74064-17-8
- Theaflavanoside II
Catalog No.:BCN0744
CAS No.:943785-09-9
- 3',8-Dihydroxyvestitol
Catalog No.:BCN0745
CAS No.:122587-87-5
Recapitulation of Evidence of Phytochemical, Pharmacokinetic and Biomedical Application of Silybin.[Pubmed:34318464]
Drug Res (Stuttg). 2021 Nov;71(9):489-503.
Silymarin is a standardized extract obtained from seeds of Silybum marianum (SM) belonging to the family Asteraceae. It is a flavonolignan complex and consists of various compounds like silybin A silybin B, isosilybin A, isosilybin B, silydianin, silychristin and Isosilychristin. Silybin is the major active component present in 60-70% of the silymarin extract. It has been used traditionally for the treatment of various liver disorders like cirrhosis, jaundice, and hepatitis. Silymarin possesses antioxidant and anti-inflammatory properties and is responsible for its antitumor activity. Other than hepatoprotective effect SM also possesses renoprotective, anti-diabetic, neuroprotective, hypolipidemic, anti-atherosclerosis and cardioprotective effects. Rather antimicrobial property of silymarin was observed against specific microbes, fungi, and viruses. This manuscript covered recent preclinical and clinical evidence of specific components silybin, responsible for its efficacy and about clinical studies has been conducted so far, which proven it's safety and offers mild effect like nausea, diarrhea and bloating. This review specifically focused on recent updates on its active components therapeutic applications against complicated ailments not covered in earlier reports.
Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications.[Pubmed:32423098]
Biomedicines. 2020 May 14;8(5). pii: biomedicines8050122.
Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from Silybum marianum, commonly known as milk thistle or St. Mary'sthistle. These species have been widely used in the treatment of liver disorders in traditional medicine since ancient times. Several properties had been attributed to the major SM flavolignans components, identified as silybin, isosilybin, silychristin, Isosilychristin, and silydianin. Previous research reported antioxidant and protective activities, which are probably related to the activation of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response. Nrf2 is a redox-sensitive nuclear transcription factor able to induce the downstream-associated genes. The disruption of Nrf2 signaling has been associated with different pathological conditions. Some identified phytochemicals from SM had shown to participate in the Nrf2 signaling pathway; in particular, they have been suggested as activators that disrupt interactions in the Keap1-Nrf2 system, but also as antioxidants or with additional actions regarding Nrf2 regulation. Thus, the study of these molecules makes them appear attractive as novel targets for the treatment or prevention of several diseases.
Simple and Rapid HPLC Separation and Quantification of Flavonoid, Flavonolignans, and 2,3-Dehydroflavonolignans in Silymarin.[Pubmed:31973217]
Foods. 2020 Jan 21;9(2). pii: foods9020116.
Herbal preparations from Silybum marianum have been used since the fourth century BC in liver disease treatment and against numerous other pathologies. Consumption of silymarin containing drugs and food supplements continues to increase. Precise, fast, reliable, and complex determination of all components of silymarin preparations is paramount for assessing its pharmacological quality. We present here simple and fast HPLC-DAD and LC-MS analytical methods for the determination and quantification of all known silymarin components, including 2,3-dehydroflavonolignans that has not been achieved so far. The first method, using a common C18 column, allows baseline separation of previously inseparable silychristin A, B, Isosilychristin, and silydianin. Moreover, this method allowed detection of three so far unknown silymarin components. In addition, the first analytical separation of enantiomers of 2,3-dehydrosilybin was achieved using a Lux 3mu Cellulose-4 chiral column, providing even more accurate description of silymarin composition. 2,3-Dehydroflavonolignans were isolated for the first time from silymarin using preparative chromatography on C18 and ASAHIPAK columns, and 2,3-dehydrosilychristin and 2,3-dehydrosilybin were for the first time conclusively confirmed by HPLC, MS, and NMR to be silymarin components. Using the optimized analytical methods, six various silymarin preparations were analyzed showing substantial differences in the composition.
Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans.[Pubmed:31919606]
Anal Bioanal Chem. 2020 Feb;412(4):819-832.
Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, Isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.
Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives.[Pubmed:31416138]
Antioxidants (Basel). 2019 Aug 14;8(8). pii: antiox8080303.
Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, Isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and Isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and Isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.
Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors.[Pubmed:30160205]
J Enzyme Inhib Med Chem. 2018 Dec;33(1):1283-1291.
Protein tyrosine phosphatase 1B (PTP1B) is an attractive molecular target for anti-diabetes, anti-obesity, and anti-cancer drug development. From the seeds of Silybum marianum, nine flavonolignans, namely, silybins A, B (1, 2), isosilybins A, B (3, 4), silychristins A, B (5, 6), Isosilychristin A (7), dehydrosilychristin A (8), and silydianin (11) were identified as a novel class of natural PTP1B inhibitors (IC50 1.3 7-23.87 microM). Analysis of structure-activity relationship suggested that the absolute configurations at C-7" and C-8" greatly affected the PTP1B inhibitory activity. Compounds 1-5 were demonstrated to be non-competitive inhibitors of PTP1B based on kinetic analyses. Molecular docking simulations resulted that 1-5 docked into the allosteric site, including alpha3, alpha6, and alpha7 helix of PTP1B. At a concentration inhibiting PTP1B completely, compounds 1-5 moderately inhibited VHR and SHP-2, and weakly inhibited TCPTP and SHP-1. These results suggested the potentiality of these PTP1B inhibitors as lead compounds for further drug developments.
Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights.[Pubmed:29803074]
J Photochem Photobiol B. 2018 Jul;184:61-70.
Silybum marianum L. (Milk thistle) is one of the most extensively studied medicinal herbs with well-known hepatoprotective activity. Light is considered as a key abiotic elicitor influencing several physiological processes in plants, including the biosynthesis of secondary metabolites. In this study, we investigated the influence of light quality on morphological and biochemical aspects in in vitro grown leaf-derived callus cultures of S. marianum. Combination of 6-benzylaminopurine (BAP 2.5mg/L) and alpha-naphthalene acetic acid (NAA 1.0mg/L) resulted in optimum callogenic response (97%) when placed under cool-white light with 16h light and 8h dark. Red light significantly increased the total phenolic content (TPC), total flavonoid content (TFC), antioxidant and superoxide dismutase (SOD) activities while highest peroxidase (POD) activity was recorded for the dark grown cultures, followed by green light grown cultures. HPLC analysis revealed enhanced total silymarin content under red light (18.67mg/g DW), which was almost double than control (9.17mg/g DW). Individually, the level of silychristin, Isosilychristin, silydianin, silybin A and silybin B were found greatest under red light, whereas green spectrum resulted in highest accumulation of isosilybin A and isosilybin B. Conversely, the amount of taxifolin was found maximum under continuous white light (0.480mg/g DW) which was almost 8-fold greater than control (0.063mg/g DW). A positive correlation was found between the TPC, TFC and antioxidant activities. This study will assist in comprehending the influence of light quality on production of valuable secondary metabolites in in vitro cultures of S. marianum L.
The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes.[Pubmed:28457856]
Chem Biol Interact. 2017 Jun 1;271:24-29.
Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and Isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC50) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC50 values (mean +/- SE) of 1.64 +/- 0.66 mug/mL and 2.67 +/- 1.18 mug/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations.
Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations.[Pubmed:28392269]
Fitoterapia. 2017 Jun;119:175-184.
Flavonolignans constitute an important class of plant secondary metabolites formed by oxidative coupling of one flavonoid and one phenylpropanoid moiety. The standardized flavonolignan-rich extract prepared from the fruits of Silybum marianum is known as silymarin and has long been used medicinally, prominently as an antihepatotoxic and as a chemopreventive agent. Principal component analysis of the variation in flavonolignan content in S. marianum samples collected from different locations in Egypt revealed biosynthetic relationships between the flavonolignans. Silybin A, silybin B, and silychristin are positively correlated as are silydianin, Isosilychristin, and isosilybin B. The detection of silyamandin in the extracts of S. marianum correlates with Isosilychristin and silydianin content. The positive correlation between silydianin, Isosilychristin, and silyamandin was demonstrated using quantitative (1)H nuclear magnetic resonance spectroscopy (qHNMR). These correlations can be interpreted as evidence for the involvement of a flavonoid radical in the biosynthesis of the flavonolignans in S. marianum. The predominance of silybins A & B over isosilybin A & B in the silybin-rich samples is discussed in light of the relative stabilities of their respective radical flavonoid biosynthetic intermediates.
Silychristin: Skeletal Alterations and Biological Activities.[Pubmed:28006905]
J Nat Prod. 2016 Dec 23;79(12):3086-3092.
Silychristin is the second most abundant flavonolignan (after silybin) present in the fruits of Silybum marianum. A group of compounds containing silychristin (3) and its derivatives such as 2,3-dehydrosilychristin (4), 2,3-dehydroanhydrosilychristin (5), anhydrosilychristin (6), silyhermin (7), and Isosilychristin (8) were studied. Physicochemical data of these compounds acquired at high resolution were compared. The absolute configuration of silyhermin (7) was proposed to be identical to silychristin A (3a) in ring D (10R,11S). The preparation of 2,3-dehydrosilychristin (4) was optimized. The Folin-Ciocalteau reduction and DPPH and ABTS radical scavenging assays revealed silychristin and its analogues to be powerful antioxidants, which were found to be more potent than silybin and 2,3-dehydrosilybin. Compounds 4-6 exhibited inhibition of microsomal lipoperoxidation (IC50 4-6 muM). Moreover, compounds 4-8 were found to be almost noncytotoxic for 10 human cell lines of different histogenetic origins. On the basis of these results, compounds 3-6 are likely responsible for most of the antioxidant properties of silymarin attributed traditionally to silybin (silibinin).
Silymarin content in Silybum marianum populations growing in Egypt.[Pubmed:27182123]
Ind Crops Prod. 2016 May;83:729-737.
Chemical variation of Silybum marianum growing in the north, middle, and south of Egypt was investigated. Variation was assessed according to the content of the individual silymarin components in the fruits of the plant. The fruits were distinguished according to location, plant variety, and fruit color (maturity). Accelerated solvent extraction was used to standardize the silymarin extraction. Quantitative analysis of the content of silymarin components was carried out using HPLC with qNMR-controlled reference standards of taxifolin and seven major flavonolignans including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, Isosilychristin, and silydianin. The quantification method was validated in accordance with ICH guidelines. Principal component analysis and hierarchical clustering were carried out to create homogeneous clusters of samples based on the content of the silymarin components. Taxifolin had the lowest correlation relative to other silymarin components, whereas silybin A was positively correlated with silybin B. The samples clustered into three classes: silydianin-rich samples, samples with an average silymarin content of <18.8 mg/g, and one class enriched in silymarin (>18.8 mg/g). S. marianum growing in the Nile delta showed the highest silymarin content. No correlation was found between fruit color and silymarin content, indicating that the fruit maturity stage has no significance.
Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages.[Pubmed:26729088]
Molecules. 2015 Dec 31;21(1):E55.
Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, Isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and Isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARgamma agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease.
Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells.[Pubmed:18435416]
Int J Cancer. 2008 Jul 1;123(1):41-50.
Prostate cancer (PCa) is the leading cause of cancer-related deaths in men; urgent measures are warranted to lower this deadly malignancy. Silymarin is a known cancer chemopreventive agent, but the relative anticancer efficacy of its constituents is still unknown. Here, we compared the efficacy of 7 pure flavonolignan compounds isolated from silymarin, namely silybin A, silybin B, isosilybin A, isosilybin B, silydianin, isosilydianin, silychristin and Isosilychristin, in advanced human PCa PC3 cells. Silybin A, silybin B, isosilybin A, isosilybin B, silibinin and silymarin strongly inhibited the colony formation by PC3 cells (p < 0.001), while silydianin, silychristin and Isosilychristin had marginal effect (p < 0.05). Using cell growth and death assays, we identified isosilybin B as the most effective isomer. FACS analysis for cell cycle also showed that silybin A, silybin B, isosilybin A, isosilybin B, silibinin and silymarin treatment resulted in strong cell cycle arrest in PC3 cells after 72 hr of treatment, while the effect of silydianin, silychristin and Isosilychristin was marginal (if any). Western blot analysis also showed the differential effect of these compounds on the levels of cell cycle regulators-cyclins (D, E, A and B), CDKs (Cdk2, 4 and Cdc2), CDKIs (p21 and p27) and other cell cycle regulators (Skp2, Cdc25A, B, C and Chk2). This study provided further evidence for differential anticancer potential among each silymarin constituent, which would have potential implications in devising better formulations of silymarin against prostate and other cancers.
Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin.[Pubmed:16205633]
Oncogene. 2006 Feb 16;25(7):1053-69.
Here, we assessed and compared the anticancer efficacy and associated mechanisms of silymarin and silibinin in human prostate cancer (PCA) PC3 cells; silymarin is comprised of silibinin and its other stereoisomers, including isosilybin A, isosilybin B, silydianin, silychristin and Isosilychristin. Silymarin and silibinin (50-100 microg/ml) inhibited cell proliferation, induced cell death, and caused G1 and G2-M cell cycle arrest in a dose/time-dependent manner. Molecular studies showed that G1 arrest was associated with a decrease in cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase (CDK)4, CDK6 and CDK2 protein levels, and CDK2 and CDK4 kinase activity, together with an increase in CDK inhibitors (CDKIs) Kip1/p27 and Cip1/p21. Further, both agents caused cytoplasmic sequestration of cyclin D1 and CDK2, contributing to G1 arrest. The G2-M arrest by silibinin and silymarin was associated with decreased levels of cyclin B1, cyclin A, pCdc2 (Tyr15), Cdc2, and an inhibition of Cdc2 kinase activity. Both agents also decreased the levels of Cdc25B and cell division cycle 25C (Cdc25C) phosphatases with an increased phosphorylation of Cdc25C at Ser216 and its translocation from nucleus to the cytoplasm, which was accompanied by an increased binding with 14-3-3beta. Both agents also increased checkpoint kinase (Chk)2 phosphorylation at Thr68 and Ser19 sites, which is known to phosphorylate Cdc25C at Ser216 site. Chk2-specific small interfering RNA largely attenuated the silymarin and silibinin-induced G2-M arrest. An increase in the phosphorylation of histone 2AX and ataxia telangiectasia mutated was also observed. These findings indicate that silymarin and silibinin modulate G1 phase cyclins-CDKs-CDKIs for G1 arrest, and the Chk2-Cdc25C-Cdc2/cyclin B1 pathway for G2-M arrest, together with an altered subcellular localization of critical cell cycle regulators. Overall, we observed comparable effects for both silymarin and silibinin at equal concentrations by weight, suggesting that silibinin could be a major cell cycle-inhibitory component in silymarin. However, other silibinin stereoisomers present in silymarin also contribute to its efficacy, and could be of interest for future investigation.