LF 11Antibiotic; neutralizes LPS CAS# 832729-13-2 |
2D Structure
- Leucovorin Calcium
Catalog No.:BCC1198
CAS No.:6035-45-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 832729-13-2 | SDF | Download SDF |
PubChem ID | 25089955 | Appearance | Powder |
Formula | C69H112N26O14 | M.Wt | 1529.81 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 2 mg/ml in 20% acetonitrile / water | ||
Sequence | FQWQRNIRKVR (Modifications: Arg-11 = C-terminal amide) | ||
Chemical Name | (2S)-N-[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-amino-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]pentanediamide | ||
SMILES | CCC(C)C(C(=O)NC(CCCN=C(N)N)C(=O)NC(CCCCN)C(=O)NC(C(C)C)C(=O)NC(CCCN=C(N)N)C(=O)N)NC(=O)C(CC(=O)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C(CCC(=O)N)NC(=O)C(CC3=CC=CC=C3)N | ||
Standard InChIKey | SIROSQHTQDVQTI-JDJCIBPGSA-N | ||
Standard InChI | InChI=1S/C69H112N26O14/c1-5-37(4)55(66(109)91-46(23-15-31-84-69(80)81)58(101)88-44(20-11-12-28-70)62(105)94-54(36(2)3)65(108)86-43(56(75)99)21-13-29-82-67(76)77)95-64(107)50(34-53(74)98)93-59(102)45(22-14-30-83-68(78)79)89-60(103)48(25-27-52(73)97)90-63(106)49(33-39-35-85-42-19-10-9-18-40(39)42)92-61(104)47(24-26-51(72)96)87-57(100)41(71)32-38-16-7-6-8-17-38/h6-10,16-19,35-37,41,43-50,54-55,85H,5,11-15,20-34,70-71H2,1-4H3,(H2,72,96)(H2,73,97)(H2,74,98)(H2,75,99)(H,86,108)(H,87,100)(H,88,101)(H,89,103)(H,90,106)(H,91,109)(H,92,104)(H,93,102)(H,94,105)(H,95,107)(H4,76,77,82)(H4,78,79,83)(H4,80,81,84)/t37-,41-,43-,44-,45-,46-,47-,48-,49-,50-,54-,55-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Peptide based on the lipopolysaccharide (LPS)-binding region of human lactoferricin. Neutralizes LPS; displays antimicrobial activity against Gram-negative and Gram-positive bacteria. Analog lauryl-LF 11 available. |
LF 11 Dilution Calculator
LF 11 Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- APD668
Catalog No.:BCC5389
CAS No.:832714-46-2
- Angelol H
Catalog No.:BCN8047
CAS No.:83247-73-8
- Dehydrocavidine
Catalog No.:BCN2549
CAS No.:83218-34-2
- 1beta-Hydroxy-beta-eudesmol
Catalog No.:BCN7097
CAS No.:83217-89-4
- ISX 9
Catalog No.:BCC6181
CAS No.:832115-62-5
- Astragaloside A
Catalog No.:BCC6494
CAS No.:83207-58-3
- 2',4',6'-Trimethoxyacetophenone
Catalog No.:BCN4847
CAS No.:832-58-6
- Angelol G
Catalog No.:BCN7963
CAS No.:83199-38-6
- 8alpha-Tigloyloxyhirsutinolide 13-O-acetate
Catalog No.:BCN7108
CAS No.:83182-58-5
- Kaempferol 3-O-rhamninoside
Catalog No.:BCN6845
CAS No.:83170-31-4
- Bonducellin
Catalog No.:BCN6823
CAS No.:83162-84-9
- Angelol B
Catalog No.:BCN8037
CAS No.:83156-04-1
- Lauryl-LF 11
Catalog No.:BCC6175
CAS No.:832729-14-3
- Napabucasin
Catalog No.:BCC6525
CAS No.:83280-65-3
- Menisporphine
Catalog No.:BCN7902
CAS No.:83287-02-9
- 7-Hydroxycoumarin-6-carboxylic acid
Catalog No.:BCN4375
CAS No.:833-52-3
- Bryostatin 1
Catalog No.:BCC7343
CAS No.:83314-01-6
- 8(17),13-Labdadien-15,16-olide
Catalog No.:BCN4374
CAS No.:83324-51-0
- (-)-Lariciresinol
Catalog No.:BCN3418
CAS No.:83327-19-9
- Dynorphin B
Catalog No.:BCC5987
CAS No.:83335-41-5
- 10-O-Caffeoyl-6-epiferetoside
Catalog No.:BCN4822
CAS No.:83348-22-5
- 25(R)-Hydroxyprotopanaxadiol
Catalog No.:BCN2493
CAS No.:83349-37-5
- D609
Catalog No.:BCC1509
CAS No.:83373-60-8
- Prenyl caffeate
Catalog No.:BCC8351
CAS No.:100884-13-7
Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides.[Pubmed:19014450]
BMC Microbiol. 2008 Nov 11;8:196.
BACKGROUND: Growing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs). These compounds not only are bactericidal by themselves but also enhance the activity of antibiotics. Studies focused on the systematic characterization of APs are hampered by the lack of standard guidelines for testing these compounds. We investigated whether the information provided by methods commonly used for the biological characterization of APs is comparable, as it is often assumed. For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides (n = 57; 9-13 amino acid residues in length) analogous to the lipopolysaccharide-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis. RESULTS: While the minimum inhibitory concentration determined by an automated turbidimetry-based system (Bioscreen) or by conventional broth microdilution methods did not differ significantly, bactericidal activity measured under static conditions in a low-ionic strength solvent resulted in a vast overestimation of antimicrobial activity. Under these conditions the degree of antagonism between the peptides and the divalent cations differed greatly depending on the bacterial strain tested. In contrast, the bioactivity of peptides was not affected by the type of plasticware (polypropylene vs. polystyrene). Susceptibility testing of APs using cation adjusted Mueller-Hinton was the most stringent screening method, although it may overlook potentially interesting peptides. Permeability assays based on sensitization to hydrophobic antibiotics provided overall information analogous - though not quantitatively comparable- to that of tests based on the uptake of hydrophobic fluorescent probes. CONCLUSION: We demonstrate that subtle changes in methods for testing cationic peptides bring about marked differences in activity. Our results show that careful selection of the test strains for susceptibility testing and for screenings of antibiotic-sensitizing activity is of critical importance. A number of peptides proved to have potent permeability-increasing activity at subinhibitory concentrations and efficiently sensitized Pseudomonas aeruginosa both to hydrophilic and hydrophobic antibiotics.
Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide.[Pubmed:15344905]
Biochem J. 2005 Jan 1;385(Pt 1):135-43.
Antibacterial peptide acylation, which mimics the structure of the natural lipopeptide polymyxin B, increases antimicrobial and endotoxin-neutralizing activities. The interaction of the lactoferricin-derived peptide LF11 and its N-terminally acylated analogue, lauryl-LF11, with different chemotypes of bacterial lipopolysaccharide (LPS Re, Ra and smooth S form) was investigated by biophysical means and was related to the peptides' biological activities. Both peptides exhibit high antibacterial activity against the three strains of Salmonella enterica differing in the LPS chemotype. Lauryl-LF11 has one order of magnitude higher activity against Re-type, but activity against Ra- and S-type bacteria is comparable with that of LF11. The alkyl derivative peptide lauryl-LF11 shows a much stronger inhibition of the LPS-induced cytokine induction in human mononuclear cells than LF11. Although peptide-LPS interaction is essentially of electrostatic nature, the lauryl-modified peptide displays a strong hydrophobic component. Such a feature might then explain the fact that saturation of the peptide binding takes place at a much lower peptide/LPS ratio for LF11 than for lauryl-LF11, and that an overcompensation of the negative LPS backbone charges is observed for lauryl-LF11. The influence of LF11 on the gel-to-liquid-crystalline phase-transition of LPS is negligible for LPS Re, but clearly fluidizing for LPS Ra. In contrast, lauryl-LF11 causes a cholesterol-like effect in the two chemotypes, fluidizing in the gel and rigidifying of the hydrocarbon chains in the liquid-crystalline phase. Both peptides convert the mixed unilamellar/non-lamellar aggregate structure of lipid A, the 'endotoxic principle' of LPS, into a multilamellar one. These data contribute to the understanding of the mechanisms of the peptide-mediated neutralization of endotoxin and effect of lipid modification of peptides.
Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide.[Pubmed:15687491]
J Biol Chem. 2005 Apr 29;280(17):16955-61.
Treatment of Gram-negative bacterial infections with antimicrobial agents can cause release of the endotoxin lipopolysaccharide (LPS), the potent initiator of sepsis, which is the major cause of mortality in intensive care units worldwide. Structural information on peptides bound to LPS can lead to the development of more effective endotoxin neutralizers. Short linear antimicrobial and endotoxin-neutralizing peptide LF11, based on the human lactoferrin, binds to LPS, inducing a peptide fold with a "T-shaped" arrangement of a hydrophobic core and two clusters of basic residues that match the distance between the two phosphate groups of LPS. Side chain arrangement of LF11 bound to LPS extends the previously proposed LPS binding pattern, emphasizing the importance of both electrostatic and hydrophobic interactions in a defined geometric arrangement. In anionic micelles, the LF11 forms amphipathic conformation with a smaller hydrophobic core than in LPS, whereas in zwitterionic micelles, the structure is even less defined. Protection of tryptophan fluorescence quenching in the order SDS>LPS>DPC and hydrogen exchange protection indicates the decreasing extent of insertion of the N terminus and potential role of peptide plasticity in differentiation between bacterial and eukaryotic membranes.