5-Hydroxy-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[5,6-f][1,3]benzodioxol-8-oneCAS# 4354-76-1 |
2D Structure
- Picropodophyllotoxin
Catalog No.:BCN2585
CAS No.:17434-18-3
- Podophyllotoxin
Catalog No.:BCN5957
CAS No.:518-28-5
- (-)-Epipodophyllotoxin
Catalog No.:BCX0796
CAS No.:4375-07-9
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 4354-76-1 | SDF | Download SDF |
PubChem ID | 4865 | Appearance | Powder |
Formula | C22H22O8 | M.Wt | 414.4 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5-hydroxy-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[5,6-f][1,3]benzodioxol-8-one | ||
SMILES | COC1=CC(=CC(=C1OC)OC)C2C3C(COC3=O)C(C4=CC5=C(C=C24)OCO5)O | ||
Standard InChIKey | YJGVMLPVUAXIQN-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C22H22O8/c1-25-16-4-10(5-17(26-2)21(16)27-3)18-11-6-14-15(30-9-29-14)7-12(11)20(23)13-8-28-22(24)19(13)18/h4-7,13,18-20,23H,8-9H2,1-3H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
5-Hydroxy-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[5,6-f][1,3]benzodioxol-8-one Dilution Calculator
5-Hydroxy-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[5,6-f][1,3]benzodioxol-8-one Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.4131 mL | 12.0656 mL | 24.1313 mL | 48.2625 mL | 60.3282 mL |
5 mM | 0.4826 mL | 2.4131 mL | 4.8263 mL | 9.6525 mL | 12.0656 mL |
10 mM | 0.2413 mL | 1.2066 mL | 2.4131 mL | 4.8263 mL | 6.0328 mL |
50 mM | 0.0483 mL | 0.2413 mL | 0.4826 mL | 0.9653 mL | 1.2066 mL |
100 mM | 0.0241 mL | 0.1207 mL | 0.2413 mL | 0.4826 mL | 0.6033 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- H-Arg(Tos)-OH
Catalog No.:BCC2867
CAS No.:4353-32-6
- L-5-Hydroxytryptophan
Catalog No.:BCC8106
CAS No.:4350-09-8
- K 41498
Catalog No.:BCC5867
CAS No.:434938-41-7
- Dacarbazine
Catalog No.:BCC1174
CAS No.:4342-03-4
- Nandrolone
Catalog No.:BCC9086
CAS No.:434-22-0
- Lithocholic Acid
Catalog No.:BCC3805
CAS No.:434-13-9
- Oxymetholone
Catalog No.:BCC4692
CAS No.:434-07-1
- Methenolone acetate
Catalog No.:BCC9028
CAS No.:434-05-9
- Ethisterone
Catalog No.:BCC4478
CAS No.:434-03-7
- VU 0357121
Catalog No.:BCC4595
CAS No.:433967-28-3
- 3-O-Acetyloleanolic acid
Catalog No.:BCN5486
CAS No.:4339-72-4
- Toddaculine
Catalog No.:BCN3639
CAS No.:4335-12-0
- (-)-Curine
Catalog No.:BCN2673
CAS No.:436-05-5
- Diffractic Acid
Catalog No.:BCN8506
CAS No.:436-32-8
- Fangchinoline
Catalog No.:BCN5956
CAS No.:436-77-1
- Ajmaline
Catalog No.:BCN3867
CAS No.:4360-12-7
- JKC 363
Catalog No.:BCC6022
CAS No.:436083-30-6
- Kobe0065
Catalog No.:BCC5290
CAS No.:436133-68-5
- Tetrodotoxin
Catalog No.:BCN1035
CAS No.:4368-28-9
- MRS 2365
Catalog No.:BCC5879
CAS No.:436847-09-5
- Gentisin
Catalog No.:BCN7518
CAS No.:437-50-3
- Genkwanin
Catalog No.:BCN5488
CAS No.:437-64-9
- Xanthinol nicotinate
Catalog No.:BCC9191
CAS No.:437-74-1
- Crategolic acid
Catalog No.:BCN5487
CAS No.:4373-41-5
Exposure to podophyllotoxin inhibits oocyte meiosis by disturbing meiotic spindle formation.[Pubmed:29976965]
Sci Rep. 2018 Jul 5;8(1):10145.
Podophyllotoxin is used as medical cream which is widely applied to genital warts and molluscum contagiosum. Although previous study showed that podophyllotoxin had minimal toxicity, it was forbidden to use during pregnancy since it might be toxic to the embryos. In present study we used mouse as the model and tried to examine whether podophyllotoxin exposure was toxic to oocyte maturation, which further affected embryo development. Our results showed that podophyllotoxin exposure inhibited mouse oocyte maturation, showing with the failure of polar body extrusion, and the inhibitory effects of podophyllotoxin on oocytes was dose-depended. Further studies showed that the meiotic spindle formation was disturbed, the chromosomes were misaligned and the fluorescence signal of microtubule was decreased, indicating that podophyllotoxin may affect microtubule dynamics for spindle organization. Moreover, the oocytes which reached metaphase II under podophyllotoxin exposure also showed aberrant spindle morphology and chromosome misalignment, and the embryos generated from these oocytes showed low developmental competence. We also found that the localization of p44/42 MAPK and gamma-tubulin was disrupted, which further confirmed the effects of podophyllotoxin on meiotic spindle formation. In all, our results indicated that podophyllotoxin exposure could affect mouse oocyte maturation by disturbing microtubule dynamics and meiotic spindle formation.