Senampeline DCAS# 62787-01-3 |
2D Structure
- Senampeline E
Catalog No.:BCN2032
CAS No.:71075-42-8
- Senampeline B
Catalog No.:BCN2031
CAS No.:62860-52-0
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 62787-01-3 | SDF | Download SDF |
PubChem ID | 6442685 | Appearance | Oil |
Formula | C25H31NO8 | M.Wt | 473.52 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | [(5S,7R)-5-acetyloxy-7-[(E)-2-methylbut-2-enoyl]oxy-6,7-dihydro-5H-pyrrolizin-1-yl]methyl (Z)-2-[[(E)-2-methylbut-2-enoyl]oxymethyl]but-2-enoate | ||
SMILES | CC=C(C)C(=O)OCC(=CC)C(=O)OCC1=C2C(CC(N2C=C1)OC(=O)C)OC(=O)C(=CC)C | ||
Standard InChIKey | DYLUSUNCJYDAKT-PCIXYTJNSA-N | ||
Standard InChI | InChI=1S/C25H31NO8/c1-7-15(4)23(28)31-13-18(9-3)25(30)32-14-19-10-11-26-21(33-17(6)27)12-20(22(19)26)34-24(29)16(5)8-2/h7-11,20-21H,12-14H2,1-6H3/b15-7+,16-8+,18-9-/t20-,21+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Senampeline D Dilution Calculator
Senampeline D Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.1118 mL | 10.5592 mL | 21.1184 mL | 42.2369 mL | 52.7961 mL |
5 mM | 0.4224 mL | 2.1118 mL | 4.2237 mL | 8.4474 mL | 10.5592 mL |
10 mM | 0.2112 mL | 1.0559 mL | 2.1118 mL | 4.2237 mL | 5.2796 mL |
50 mM | 0.0422 mL | 0.2112 mL | 0.4224 mL | 0.8447 mL | 1.0559 mL |
100 mM | 0.0211 mL | 0.1056 mL | 0.2112 mL | 0.4224 mL | 0.528 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Senampeline A
Catalog No.:BCN2030
CAS No.:62787-00-2
- Pterophorine
Catalog No.:BCN2118
CAS No.:62786-99-6
- Epitrametol
Catalog No.:BCN7073
CAS No.:627538-65-2
- SD-208
Catalog No.:BCC1938
CAS No.:627536-09-8
- BMS-564929
Catalog No.:BCC1425
CAS No.:627530-84-1
- 4-Amino-N-methylbenzamide
Catalog No.:BCC8685
CAS No.:6274-22-2
- SKF38393 HCl
Catalog No.:BCC6526
CAS No.:62717-42-4
- Dihydrolycorine
Catalog No.:BCN2475
CAS No.:6271-21-2
- NF 449
Catalog No.:BCC7043
CAS No.:627034-85-9
- Dioctanoylglycol
Catalog No.:BCC6662
CAS No.:627-86-1
- H-D-Arg-OH.HCl
Catalog No.:BCC2869
CAS No.:627-75-8
- Saikosaponin F
Catalog No.:BCN2776
CAS No.:62687-63-2
- SU14813
Catalog No.:BCC1971
CAS No.:627908-92-3
- Palmitic acid ethyl ester
Catalog No.:BCN8298
CAS No.:628-97-7
- Jolkinol A
Catalog No.:BCN3778
CAS No.:62820-11-5
- Meglumine
Catalog No.:BCC4795
CAS No.:6284-40-8
- Senampeline E
Catalog No.:BCN2032
CAS No.:71075-42-8
- 2-Amino-6-nitrobenzothiazole
Catalog No.:BCC8544
CAS No.:6285-57-0
- Senampeline B
Catalog No.:BCN2031
CAS No.:62860-52-0
- TP 003
Catalog No.:BCC6169
CAS No.:628690-75-5
- Hecubine
Catalog No.:BCN7467
CAS No.:62874-52-6
- Cefoperazone
Catalog No.:BCC3748
CAS No.:62893-19-0
- Heptanal oxime
Catalog No.:BCN2267
CAS No.:629-31-2
- Procaterol hydrochloride
Catalog No.:BCC6937
CAS No.:62929-91-3
Vitamin D reduces the inflammatory response by Porphyromonas gingivalis infection by modulating human beta-defensin-3 in human gingival epithelium and periodontal ligament cells.[Pubmed:28384529]
Int Immunopharmacol. 2017 Jun;47:106-117.
Periodontitis is a multifactorial polymicrobial infection characterized by a destructive inflammatory process. Porphyromonas gingivalis, a Gram-negative black-pigmented anaerobe, is a major pathogen in the initiation and progression of periodontitis; it produces several virulence factors that stimulate human gingival epithelium (HGE) cells and human periodontal ligament (HPL) cells to produce various inflammatory mediators. A variety of substances, such as vitamin D, have growth-inhibitory effects on some bacterial pathogens and have shown chemo-preventive and anti-inflammatory activity. We used a model with HGE and HPL cells infected with P. gingivalis to determine the influence of vitamin D on P. gingivalis growth and adhesion and the immunomodulatory effect on TNF-alpha, IL-8, IL-12 and human-beta-defensin 3 production. Our results demonstrated, firstly, the lack of any cytotoxic effect on the HGE and HPL cells when treated with vitamin D; in addition, vitamin D inhibited P. gingivalis adhesion and infectivity in HGE and HPL cells. Our study then showed that vitamin D reduced TNF-alpha, IL-8, IL-12 production in P. gingivalis-infected HGE and HPL cells. In contrast, a significant upregulation of the human-beta-defensin 3 expression in HGE and HPL cells induced by P. gingivalis was demonstrated. Our results indicate that vitamin D specifically enhances the production of the human-beta-defensin 3 antimicrobial peptide and exerts an inhibitory effect on the pro-inflammatory cytokines, thus suggesting that vitamin D may offer possible therapeutic applications for periodontitis.
Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study : A Randomized Clinical Trial.[Pubmed:28384800]
JAMA Cardiol. 2017 Jun 1;2(6):608-616.
Importance: Cohort studies have reported increased incidence of cardiovascular disease (CVD) among individuals with low vitamin D status. To date, randomized clinical trials of vitamin D supplementation have not found an effect, possibly because of using too low a dose of vitamin D. Objective: To examine whether monthly high-dose vitamin D supplementation prevents CVD in the general population. Design, Setting, and Participants: The Vitamin D Assessment Study is a randomized, double-blind, placebo-controlled trial that recruited participants mostly from family practices in Auckland, New Zealand, from April 5, 2011, through November 6, 2012, with follow-up until July 2015. Participants were community-resident adults aged 50 to 84 years. Of 47905 adults invited from family practices and 163 from community groups, 5110 participants were randomized to receive vitamin D3 (n = 2558) or placebo (n = 2552). Two participants retracted consent, and all others (n = 5108) were included in the primary analysis. Interventions: Oral vitamin D3 in an initial dose of 200000 IU, followed a month later by monthly doses of 100000 IU, or placebo for a median of 3.3 years (range, 2.5-4.2 years). Main Outcomes and Measures: The primary outcome was the number of participants with incident CVD and death, including a prespecified subgroup analysis in participants with vitamin D deficiency (baseline deseasonalized 25-hydroxyvitamin D [25(OH)D] levels <20 ng/mL). Secondary outcomes were myocardial infarction, angina, heart failure, hypertension, arrhythmias, arteriosclerosis, stroke, and venous thrombosis. Results: Of the 5108 participants included in the analysis, the mean (SD) age was 65.9 (8.3) years, 2969 (58.1%) were male, and 4253 (83.3%) were of European or other ethnicity, with the remainder being Polynesian or South Asian. Mean (SD) baseline deseasonalized 25(OH)D concentration was 26.5 (9.0) ng/mL, with 1270 participants (24.9%) being vitamin D deficient. In a random sample of 438 participants, the mean follow-up 25(OH)D level was greater than 20 ng/mL higher in the vitamin D group than in the placebo group. The primary outcome of CVD occurred in 303 participants (11.8%) in the vitamin D group and 293 participants (11.5%) in the placebo group, yielding an adjusted hazard ratio of 1.02 (95% CI, 0.87-1.20). Similar results were seen for participants with baseline vitamin D deficiency and for secondary outcomes. Conclusions and Relevance: Monthly high-dose vitamin D supplementation does not prevent CVD. This result does not support the use of monthly vitamin D supplementation for this purpose. The effects of daily or weekly dosing require further study. Trial Registration: clinicaltrials.gov Identifier: ACTRN12611000402943.