UndecanolactoneCAS# 710-04-3 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
Cas No. | 710-04-3 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Oil |
Formula | C11H20O2 | M.Wt | 184.2 |
Type of Compound | Miscellaneous | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | γ- and δ-Undecanolactone could used commercially as flavor ingredients. |
Undecanolactone Dilution Calculator
Undecanolactone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 5.4289 mL | 27.1444 mL | 54.2888 mL | 108.5776 mL | 135.722 mL |
5 mM | 1.0858 mL | 5.4289 mL | 10.8578 mL | 21.7155 mL | 27.1444 mL |
10 mM | 0.5429 mL | 2.7144 mL | 5.4289 mL | 10.8578 mL | 13.5722 mL |
50 mM | 0.1086 mL | 0.5429 mL | 1.0858 mL | 2.1716 mL | 2.7144 mL |
100 mM | 0.0543 mL | 0.2714 mL | 0.5429 mL | 1.0858 mL | 1.3572 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- (R)-(+)-Limonene
Catalog No.:BCN0067
CAS No.:5989-27-5
- 1,4-Cineole
Catalog No.:BCN0066
CAS No.:470-67-7
- Delta-Nonalactone
Catalog No.:BCN0065
CAS No.:3301-94-8
- Kaempferol 3,4'-diglucoside 7-rhamnoside
Catalog No.:BCN0064
CAS No.:1131009-93-2
- Acetic acid m-cresyl ester
Catalog No.:BCN0063
CAS No.:122-46-3
- 2',6'-Dihydroxy-4,4'-dimethoxychalcone
Catalog No.:BCN0062
CAS No.:20621-49-2
- 4-Isopropylbenzaldehyde
Catalog No.:BCN0061
CAS No.:122-03-2
- Dihydroxyfumaric acid
Catalog No.:BCN0060
CAS No.:133-38-0
- Apigenin 4'-O-(2'',6''-di-O-E-p-coumaroyl)glucoside
Catalog No.:BCN0059
CAS No.:71781-79-8
- Myosmine
Catalog No.:BCN0058
CAS No.:532-12-7
- Hippuric acid
Catalog No.:BCN0057
CAS No.:495-69-2
- 3-Ethoxy-4-hydroxybenzaldehyde
Catalog No.:BCN0056
CAS No.:121-32-4
- Laricitrin
Catalog No.:BCN0069
CAS No.:53472-37-0
- Peucenidin
Catalog No.:BCN0070
CAS No.:33044-93-8
- Homobutein
Catalog No.:BCN0071
CAS No.:34000-39-0
- Undecanoic gamma-lactone
Catalog No.:BCN0072
CAS No.:104-67-6
- Procyanidin B4
Catalog No.:BCN0073
CAS No.:29106-51-2
- Gitoxin
Catalog No.:BCN0074
CAS No.:4562-36-1
- Isoarundinin II
Catalog No.:BCN0075
CAS No.:151538-56-6
- 3,4-Dihydroxy-5-methoxybenzoic acid
Catalog No.:BCN0076
CAS No.:3934-84-7
- Cimiaceroside A
Catalog No.:BCN0077
CAS No.:210643-83-7
- 2-Octanone
Catalog No.:BCN0078
CAS No.:111-13-7
- 3,5,7-Trihydroxy-3',4',5'-trimethoxyflavone
Catalog No.:BCN0079
CAS No.:146132-95-8
- 3,5-Dihydroxy-4-methylbenzoic acid
Catalog No.:BCN0080
CAS No.:28026-96-2
Interactions of inhibitor molecules with the human CYP2E1 enzyme active site.[Pubmed:23069620]
Eur J Pharm Sci. 2012 Dec 18;47(5):996-1005.
CYP2E1 is an important enzyme oxidizing ethanol as well as several drugs and other xenobiotics in the human liver. We determined the inhibition potency of structurally diverse compounds against human CYP2E1, and analyzed their interactions with the enzyme active site by molecular docking and 3D-QSAR approaches. The IC(50) values for the tested compounds varied from 1.4 muM for gamma-Undecanolactone to over 46 mM for glycerol. This data set was used to create a comparative molecular field analysis (CoMFA) model. The most important interactions for binding of inhibitors were identified by docking and key features for inhibitors were characterized via the COMFA model. Since the active site of CYP2E1 is flexible, long chain lactones and alkyl alcohols fitted best into the larger open form while the other compounds fitted better in the smaller closed form of the active site. Electrostatic interactions near the Thr(303) residue proved to be important for inhibition of the enzyme activity. Thus, docking analysis and the predictive CoMFA model proved to be efficient tools for revealing interactions between inhibiting compounds and CYP2E1. These approaches can be used to analyze CYP2E1-mediated metabolism and drug interactions in the development of new chemical entities.
Pronounced differences in inhibition potency of lactone and non-lactone compounds for mouse and human coumarin 7-hydroxylases (CYP2A5 and CYP2A6).[Pubmed:10659953]
Xenobiotica. 2000 Jan;30(1):81-92.
1. The structural requirements for a compound to be a potent inhibitor for mouse CYP2A5 and human CYP2A6 enzymes catalysing coumarin 7-hydroxylase activity have been studied. 2. The IC50 of 28 compounds for the pyrazole-treated male DBA/2 mouse and human liver microsomal coumarin 7-hydroxylation were determined at 10 microm coumarin concentration 15 times over Km of coumarin. 3. The three most potent inhibitors for CYP2A5 were gamma-nonanoic lactone, gamma-decanolactone and gamma-phenyl-gamma-butyrolactone with an IC50 = 1.9+/-0.4, 2.1+/-0.2 and 2.4+/-0.3 microM and for CYP2A67-methylcoumarin, butylcyclohexane and indan with an IC50. = 30+/-3.2, 43+/-9 and 50+/-11 microM. 4. Among the 28 compounds studied, only 2-benzoxazolinone, 2-indanone and gamma-valerolactone showed similar inhibitory activity in both species. Indan had a lower IC50 for human than for mouse coumarin 7-hydroxylation, whereas the IC50 of 24 other compounds was higher for human than for mouse coumarin 7-hydroxylation. 5. The largest difference in IC50 between mouse and human activity was observed with 5-substituted phenyl, pentyl, hexyl, heptyl or octyl gamma-lactones or 6-substituted delta-lactones. IC50 of gamma-Undecanolactone and gamma-decanolactone was 500 times lower for mouse than human coumarin 7-hydroxylation. 6. The difference in the IC50 between human and mouse coumarin 7-hydroxylation decreased substantially with the corresponding compounds without the lactone ring. 7. It is concluded that certain 5- or 6-position substituted gamma- and delta-lactones are potent inhibitors for mouse CYP2A5 but not for the orthologous human CYP2A6 and that the active site of CYP2A6 could be smaller than the active site of CYP2A5.