1,5-Pentanediol diacrylateCAS# 36840-85-4 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 36840-85-4 | SDF | Download SDF |
PubChem ID | 93195 | Appearance | Powder |
Formula | C11H16O4 | M.Wt | 212 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5-prop-2-enoyloxypentyl prop-2-enoate | ||
SMILES | C=CC(=O)OCCCCCOC(=O)C=C | ||
Standard InChIKey | XAMCLRBWHRRBCN-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C11H16O4/c1-3-10(12)14-8-6-5-7-9-15-11(13)4-2/h3-4H,1-2,5-9H2 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
1,5-Pentanediol diacrylate Dilution Calculator
1,5-Pentanediol diacrylate Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.717 mL | 23.5849 mL | 47.1698 mL | 94.3396 mL | 117.9245 mL |
5 mM | 0.9434 mL | 4.717 mL | 9.434 mL | 18.8679 mL | 23.5849 mL |
10 mM | 0.4717 mL | 2.3585 mL | 4.717 mL | 9.434 mL | 11.7925 mL |
50 mM | 0.0943 mL | 0.4717 mL | 0.9434 mL | 1.8868 mL | 2.3585 mL |
100 mM | 0.0472 mL | 0.2358 mL | 0.4717 mL | 0.9434 mL | 1.1792 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Naringenin triacetate
Catalog No.:BCN5425
CAS No.:3682-04-0
- Isohemiphloin
Catalog No.:BCN5424
CAS No.:3682-02-8
- Puerarin
Catalog No.:BCN5958
CAS No.:3681-99-0
- Vitexin
Catalog No.:BCN5423
CAS No.:3681-93-4
- Ribavirin
Catalog No.:BCC4935
CAS No.:36791-04-5
- MRS 2279
Catalog No.:BCC5880
CAS No.:367909-40-8
- 4-Aminophthalimide
Catalog No.:BCC8689
CAS No.:3676-85-5
- 10-Shogaol
Catalog No.:BCN3267
CAS No.:36752-54-2
- AR-M 1896
Catalog No.:BCC5931
CAS No.:367518-31-8
- Lurasidone HCl
Catalog No.:BCC4458
CAS No.:367514-88-3
- Lurasidone
Catalog No.:BCC9013
CAS No.:367514-87-2
- Boc-D-Phe-Osu
Catalog No.:BCC2600
CAS No.:3674-18-8
- Meclofenoxate hydrochloride
Catalog No.:BCC4170
CAS No.:3685-84-5
- Tramiprosate
Catalog No.:BCC7727
CAS No.:3687-18-1
- Aucuparin
Catalog No.:BCN7450
CAS No.:3687-28-3
- TC 14012
Catalog No.:BCC7910
CAS No.:368874-34-4
- p-Coumaryl alcohol
Catalog No.:BCN3922
CAS No.:3690-05-9
- Zebularine
Catalog No.:BCC1136
CAS No.:3690-10-6
- 6-epi-Augustifolin
Catalog No.:BCN3233
CAS No.:369390-94-3
- Hydramicromelin B
Catalog No.:BCN7560
CAS No.:369391-55-9
- Icilin
Catalog No.:BCC4074
CAS No.:36945-98-9
- Oroxylin A 7-O-beta-D-glucuronide
Catalog No.:BCN2337
CAS No.:36948-76-2
- TMPyP4 tosylate
Catalog No.:BCC7899
CAS No.:36951-72-1
- FCCP
Catalog No.:BCC5659
CAS No.:370-86-5
Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.[Pubmed:28351668]
J Control Release. 2017 Oct 10;263:18-28.
Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of <20%. Such unfavorable numbers are closely related to the heterogeneity of the disease and the unsatisfactory therapies currently used to manage patients with invasive HCC. Outside of the clinic, gene therapy research is evolving to overcome the poor responses and toxicity associated with standard treatments. The inadequacy of gene delivery vectors, including poor intracellular delivery and cell specificity, are major barriers in the gene therapy field. Herein, we described a non-viral strategy for effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-Pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (P<0.01). Notably, this biodegradable end-modified PBAE gene delivery vector was not cytotoxic and maintained the viability of hepatocytes above 80%. In a HCC/hepatocyte co-culture model, in which cancerous and healthy cells share the same micro-environment, 536 25 w/w NPs specifically transfected cancer cells. PBAE NP administration to a subcutaneous HCC mouse model, established with one of the human lines tested in vitro, confirmed effective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer-selective NPs are a promising technology to deliver therapeutic genes to liver cancer.