TMPyP4 tosylateInhibitor of human telomerase CAS# 36951-72-1 |
2D Structure
- Valproic acid sodium salt (Sodium valproate)
Catalog No.:BCC2156
CAS No.:1069-66-5
- Vorinostat (SAHA, MK0683)
Catalog No.:BCC2145
CAS No.:149647-78-9
- Resminostat (RAS2410)
Catalog No.:BCC2165
CAS No.:864814-88-0
- PCI-34051
Catalog No.:BCC2148
CAS No.:950762-95-5
- Droxinostat
Catalog No.:BCC2157
CAS No.:99873-43-5
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 36951-72-1 | SDF | Download SDF |
PubChem ID | 11979833 | Appearance | Powder |
Formula | C72H66N8O12S4 | M.Wt | 1363.6 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | TMPYP; 36951-72-1 | ||
Solubility | DMSO : 10 mg/mL (7.33 mM; Need ultrasonic) H2O : 6.2 mg/mL (4.55 mM; Need ultrasonic) | ||
Chemical Name | 4-methylbenzenesulfonate;5,10,15,20-tetrakis(1-methylpyridin-1-ium-4-yl)-21,22-dihydroporphyrin | ||
SMILES | CC1=CC=C(C=C1)S(=O)(=O)[O-].CC1=CC=C(C=C1)S(=O)(=O)[O-].CC1=CC=C(C=C1)S(=O)(=O)[O-].CC1=CC=C(C=C1)S(=O)(=O)[O-].C[N+]1=CC=C(C=C1)C2=C3C=CC(=C(C4=CC=C(N4)C(=C5C=CC(=N5)C(=C6C=CC2=N6)C7=CC=[N+](C=C7)C)C8=CC=[N+](C=C8)C)C9=CC=[N+](C=C9)C)N3 | ||
Standard InChIKey | AKZFRMNXBLFDNN-UHFFFAOYSA-K | ||
Standard InChI | InChI=1S/C44H37N8.4C7H8O3S/c1-49-21-13-29(14-22-49)41-33-5-7-35(45-33)42(30-15-23-50(2)24-16-30)37-9-11-39(47-37)44(32-19-27-52(4)28-20-32)40-12-10-38(48-40)43(36-8-6-34(41)46-36)31-17-25-51(3)26-18-31;4*1-6-2-4-7(5-3-6)11(8,9)10/h5-28H,1-4H3,(H,45,46,47,48);4*2-5H,1H3,(H,8,9,10)/q+3;;;;/p-3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Cationic porphyrin; inhibits human telomerase. Stacks with G tetrads to stabilize quadruplex DNA. Inhibits cell proliferation and induces cell death in three myeloma cell lines. Activity results in telomere shortening at concentrations between 1 and 5 μM. |
TMPyP4 tosylate Dilution Calculator
TMPyP4 tosylate Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 0.7334 mL | 3.6668 mL | 7.3335 mL | 14.6671 mL | 18.3338 mL |
5 mM | 0.1467 mL | 0.7334 mL | 1.4667 mL | 2.9334 mL | 3.6668 mL |
10 mM | 0.0733 mL | 0.3667 mL | 0.7334 mL | 1.4667 mL | 1.8334 mL |
50 mM | 0.0147 mL | 0.0733 mL | 0.1467 mL | 0.2933 mL | 0.3667 mL |
100 mM | 0.0073 mL | 0.0367 mL | 0.0733 mL | 0.1467 mL | 0.1833 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Oroxylin A 7-O-beta-D-glucuronide
Catalog No.:BCN2337
CAS No.:36948-76-2
- Icilin
Catalog No.:BCC4074
CAS No.:36945-98-9
- Hydramicromelin B
Catalog No.:BCN7560
CAS No.:369391-55-9
- 6-epi-Augustifolin
Catalog No.:BCN3233
CAS No.:369390-94-3
- Zebularine
Catalog No.:BCC1136
CAS No.:3690-10-6
- p-Coumaryl alcohol
Catalog No.:BCN3922
CAS No.:3690-05-9
- TC 14012
Catalog No.:BCC7910
CAS No.:368874-34-4
- Aucuparin
Catalog No.:BCN7450
CAS No.:3687-28-3
- Tramiprosate
Catalog No.:BCC7727
CAS No.:3687-18-1
- Meclofenoxate hydrochloride
Catalog No.:BCC4170
CAS No.:3685-84-5
- 1,5-Pentanediol diacrylate
Catalog No.:BCC8426
CAS No.:36840-85-4
- Naringenin triacetate
Catalog No.:BCN5425
CAS No.:3682-04-0
- FCCP
Catalog No.:BCC5659
CAS No.:370-86-5
- Zinterol hydrochloride
Catalog No.:BCC6911
CAS No.:37000-20-7
- (-)-Variabilin
Catalog No.:BCN4815
CAS No.:370102-93-5
- Carbetocin
Catalog No.:BCC6304
CAS No.:37025-55-1
- Cyclo(L-Phe-L-Pro)
Catalog No.:BCN4029
CAS No.:3705-26-8
- Cyclo(Gly-L-Pro)
Catalog No.:BCN4059
CAS No.:3705-27-9
- Z-Glu-OBzl
Catalog No.:BCC2780
CAS No.:3705-42-8
- Procyanidin C1
Catalog No.:BCN6317
CAS No.:37064-30-5
- Azlocillin sodium salt
Catalog No.:BCC4763
CAS No.:37091-65-9
- IC-87114
Catalog No.:BCC1161
CAS No.:371242-69-2
- Murrangatin
Catalog No.:BCN5426
CAS No.:37126-91-3
- 4'-Amino-3',5'-dichloroacetophenone
Catalog No.:BCC8678
CAS No.:37148-48-4
Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma.[Pubmed:14555701]
Mol Cancer Ther. 2003 Sep;2(9):825-33.
OBJECTIVE: The aim of this study was to test the efficacy of telomerase inhibitor (TMPyP4 [tetra(N-methyl-4-pyridyl)-porphyrin chloride]; a G-quadruplex-intercalating porphyrin) as a potential therapeutic agent for multiple myeloma. MATERIALS AND METHODS: We studied telomere length, telomerase activity, and effect of telomerase inhibition in multiple myeloma cells. Several myeloma cell lines were analyzed for telomerase activity, telomere length, and gene expression. Three myeloma cell lines (U266, ARH77, and ARD) were treated with TMPyP4 for 3-4 weeks. Viable cell number was assessed by trypan blue exclusion, and nature of cell death was determined by annexin labeling and/or DNA fragmentation. In situ oligo ligation technique was used to identify specific DNase I-type DNA cleavage. RESULTS: We report high telomerase activity and shortened telomeres in myeloma cells compared to normal B cells. We have also observed inhibition of telomerase activity, reduction in telomere length, and decline of myeloma cell growth, as measured by trypan blue dye exclusion, following exposure to TMPyP4. Exposure to porphyrin reduced telomerase activity of U266, ARH77, and ARD myeloma cells by 98%, 92%, and 99%, respectively. Exposure to porphyrin had no effect on viability for the first 14 days, followed by death of 75-90% of cells over the next 2 weeks. The nature of cell death was apoptotic, as determined by annexin and DNA nick labeling. Majority of cells showed DNA fragmentation specific to caspase-3-activated DNase I. CONCLUSIONS: These results demonstrate anti-proliferative activity of G-quadruplex-intercalating agents, and suggest telomerase as an important therapeutic target for myeloma therapy.
Effect of telomere and telomerase interactive agents on human tumor and normal cell lines.[Pubmed:10741725]
Clin Cancer Res. 2000 Mar;6(3):987-93.
Shortening of telomeres along with an up-regulation of telomerase is implicated in the immortality of tumor cells. Targeting either telomeres or telomerase with specific compounds has been proposed as an anticancer strategy. Because telomerase activity and telomeres are found in normal cells, telomere or telomerase targeting agents could induce side effects in normal tissues. We evaluated the effects of telomere and telomerase interactive agents in human tumor and normal cell lines to try to determine the potential side effects those agents might induce in patients. Toxicity of the G-quadruplex interactive porphyrins (TMPyP4, TMPyP2) and azidothymidine (AZT) were tested using a cell-counting technique against normal human cell lines (CRL-2115 and CRL-2120, fibroblasts; NHEK-Ad, adult keratinocytes; CCL-241, small intestinal cells; NCM 460, colonic mucosal epithelial cells) and human tumor cell lines (MDA-MB 231 and Hs 578T, breast cancer; SK-N-FI, neuroblastoma; HeLa, cervix cancer; MIA PaCa-2, pancreatic cancer; HT-29 and HCT-116, colon cancer; DU 145, prostatic cancer cell line). Telomerase activity of these cell lines was measured by a non-PCR-based conventional assay. The effects of TMPgammaP2, TMPyP4, and AZT were also evaluated against normal human bone marrow specimens, using a granulocyte-macrophage colony-forming assay (CFU-GM). AZT showed very low cytotoxic effects against normal and tumor cell lines, with the IC50 values above 200 microM. The IC50 values for TMPyP2 and TMPyP4 in normal human cell lines were in the range of 2.9-48.3 microM and 1.7-15.5 microM, respectively, whereas in tumor cell lines the IC50 values were 11.4-53 microM and 9.0-28.2 microM, respectively. Within the tissue types, keratinocytes were more sensitive to TMPyP4 than fibroblasts, and small intestinal cells were more sensitive than colonic mucosal epithelial cells. The IC50 for TMPyP2 and TMPyP4 in the normal marrow colony-forming assays were 19.3 +/- 5.1 microM and 47.9 +/-1.0 microM, respectively. In conclusion, the in vitro cytotoxicity of the telomere interactive agent TMPyP4 is comparable in human tumor and normal cell lines, which indicates that TMPyP4 could have effects on normal tissues.