MRS 2279Selective, high affinity P2Y1 antagonist CAS# 367909-40-8 |
2D Structure
- MTEP hydrochloride
Catalog No.:BCC1780
CAS No.:1186195-60-7
- mGlu2 agonist
Catalog No.:BCC1745
CAS No.:1311385-32-6
- LY341495
Catalog No.:BCC1724
CAS No.:201943-63-7
- CPPHA
Catalog No.:BCC1501
CAS No.:693288-97-0
- Dipraglurant
Catalog No.:BCC1531
CAS No.:872363-17-2
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 367909-40-8 | SDF | Download SDF |
PubChem ID | 90488744 | Appearance | Powder |
Formula | C13H24ClN7O8P2 | M.Wt | 503.78 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in water | ||
Chemical Name | azane;[(1R,2S,4S,5S)-4-[2-chloro-6-(methylamino)purin-9-yl]-2-phosphonooxy-1-bicyclo[3.1.0]hexanyl]methyl dihydrogen phosphate | ||
SMILES | CNC1=NC(=NC2=C1N=CN2C3CC(C4(C3C4)COP(=O)(O)O)OP(=O)(O)O)Cl.N.N | ||
Standard InChIKey | MLPKPDFUVMQAOX-KOVKCLEESA-N | ||
Standard InChI | InChI=1S/C13H18ClN5O8P2.2H3N/c1-15-10-9-11(18-12(14)17-10)19(5-16-9)7-2-8(27-29(23,24)25)13(3-6(7)13)4-26-28(20,21)22;;/h5-8H,2-4H2,1H3,(H,15,17,18)(H2,20,21,22)(H2,23,24,25);2*1H3/t6-,7+,8+,13+;;/m1../s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Selective, high affinity competitive antagonist of the P2Y1 receptor (Ki = 2.5 nM; IC50 = 51.6 nM). Fails to block nucleotide signaling at most other P2Y receptors (P2Y2, P2Y4, P2Y6, P2Y11 and P2Y12) and potently inhibits ADP-induced aggregation of human blood platelets in vitro (pKB = 8.05). |
MRS 2279 Dilution Calculator
MRS 2279 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.985 mL | 9.925 mL | 19.8499 mL | 39.6999 mL | 49.6248 mL |
5 mM | 0.397 mL | 1.985 mL | 3.97 mL | 7.94 mL | 9.925 mL |
10 mM | 0.1985 mL | 0.9925 mL | 1.985 mL | 3.97 mL | 4.9625 mL |
50 mM | 0.0397 mL | 0.1985 mL | 0.397 mL | 0.794 mL | 0.9925 mL |
100 mM | 0.0198 mL | 0.0992 mL | 0.1985 mL | 0.397 mL | 0.4962 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 4-Aminophthalimide
Catalog No.:BCC8689
CAS No.:3676-85-5
- 10-Shogaol
Catalog No.:BCN3267
CAS No.:36752-54-2
- AR-M 1896
Catalog No.:BCC5931
CAS No.:367518-31-8
- Lurasidone HCl
Catalog No.:BCC4458
CAS No.:367514-88-3
- Lurasidone
Catalog No.:BCC9013
CAS No.:367514-87-2
- Boc-D-Phe-Osu
Catalog No.:BCC2600
CAS No.:3674-18-8
- Boc-Phe-Osu
Catalog No.:BCC2601
CAS No.:3674-06-4
- Beta-Solamarine
Catalog No.:BCN2693
CAS No.:3671-38-3
- 8-Shogaol
Catalog No.:BCN3266
CAS No.:36700-45-5
- Benzyl 2,4-dihydroxyphenyl ketone
Catalog No.:BCC8867
CAS No.:3669-41-8
- Isorhamnetin 3-glucuronide
Catalog No.:BCN2709
CAS No.:36687-76-0
- Pulchinenoside E
Catalog No.:BCN8165
CAS No.:366814-43-9
- Ribavirin
Catalog No.:BCC4935
CAS No.:36791-04-5
- Vitexin
Catalog No.:BCN5423
CAS No.:3681-93-4
- Puerarin
Catalog No.:BCN5958
CAS No.:3681-99-0
- Isohemiphloin
Catalog No.:BCN5424
CAS No.:3682-02-8
- Naringenin triacetate
Catalog No.:BCN5425
CAS No.:3682-04-0
- 1,5-Pentanediol diacrylate
Catalog No.:BCC8426
CAS No.:36840-85-4
- Meclofenoxate hydrochloride
Catalog No.:BCC4170
CAS No.:3685-84-5
- Tramiprosate
Catalog No.:BCC7727
CAS No.:3687-18-1
- Aucuparin
Catalog No.:BCN7450
CAS No.:3687-28-3
- TC 14012
Catalog No.:BCC7910
CAS No.:368874-34-4
- p-Coumaryl alcohol
Catalog No.:BCN3922
CAS No.:3690-05-9
- Zebularine
Catalog No.:BCC1136
CAS No.:3690-10-6
ADP ribose is an endogenous ligand for the purinergic P2Y1 receptor.[Pubmed:21094205]
Mol Cell Endocrinol. 2011 Feb 10;333(1):8-19.
The mechanism by which extracellular ADP ribose (ADPr) increases intracellular free Ca(2+) concentration ([Ca(2+)](i)) remains unknown. We measured [Ca(2+)](i) changes in fura-2 loaded rat insulinoma INS-1E cells, and in primary beta-cells from rat and human. A phosphonate analogue of ADPr (PADPr) and 8-Bromo-ADPr (8Br-ADPr) were synthesized. ADPr increased [Ca(2+)](i) in the form of a peak followed by a plateau dependent on extracellular Ca(2+). NAD(+), cADPr, PADPr, 8Br-ADPr or breakdown products of ADPr did not increase [Ca(2+)](i). The ADPr-induced [Ca(2+)](i) increase was not affected by inhibitors of TRPM2, but was abolished by thapsigargin and inhibited when phospholipase C and IP(3) receptors were inhibited. MRS 2179 and MRS 2279, specific inhibitors of the purinergic receptor P2Y1, completely blocked the ADPr-induced [Ca(2+)](i) increase. ADPr increased [Ca(2+)](i) in transfected human astrocytoma cells (1321N1) that express human P2Y1 receptors, but not in untransfected astrocytoma cells. We conclude that ADPr is a specific agonist of P2Y1 receptors.
Molecular recognition at purine and pyrimidine nucleotide (P2) receptors.[Pubmed:15078212]
Curr Top Med Chem. 2004;4(8):805-19.
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X(1) (derivatives of pyridoxal phosphates and suramin), P2X(3)(A-317491), P2X(7) (derivatives of the isoquinoline KN-62), P2Y(1)(nucleotide analogues MRS 2179 and MRS 2279), P2Y(2)(thiouracil derivatives such as AR-C126313), and P2Y(12)(nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y(1)receptors. The dinucleotide INS 37217 potently activates the P2Y(2)receptor. UTP-gamma-S and UDP-beta-S are selective agonists for P2Y(2)/P2Y(4)and P2Y(6)receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y(1)receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7.
2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists.[Pubmed:14584948]
J Med Chem. 2003 Nov 6;46(23):4974-87.
Preference for the northern (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of P2Y(1) receptors was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute (Nandanan et al. J. Med. Chem. 2000, 43, 829-842). We have now combined the ring-constrained (N)-methanocarba modification with other functionalities at the 2-position of the adenine moiety. A new synthetic route to this series of bisphosphate derivatives was introduced, consisting of phosphorylation of the pseudoribose moiety prior to coupling with the adenine base. The activity of the newly synthesized analogues was determined by measuring antagonism of 2-methylthio-ADP-stimulated phospholipase C (PLC) activity in 1321N1 human astrocytoma cells expressing the recombinant human P2Y(1) receptor and by using the radiolabeled antagonist [(3)H]2-chloro-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate 5 in a newly developed binding assay in Sf9 cell membranes. Within the series of 2-halo analogues, the most potent molecule at the hP2Y(1) receptor was an (N)-methanocarba N(6)-methyl-2-iodo analogue 12, which displayed a K(i) value in competition for binding of [(3)H]5 of 0.79 nM and a K(B) value of 1.74 nM for inhibition of PLC. Thus, 12 is the most potent antagonist selective for the P2Y(1) receptor yet reported. The 2-iodo group was substituted with trimethyltin, thus providing a parallel synthetic route for the introduction of an iodo group in this high-affinity antagonist. The (N)-methanocarba-2-methylthio, 2-methylseleno, 2-hexyl, 2-(1-hexenyl), and 2-(1-hexynyl) analogues bound less well, exhibiting micromolar affinity at P2Y(1) receptors. An enzymatic method of synthesis of the 3',5'-bisphosphate from the corresponding 3'-monophosphate, suitable for the preparation of a radiophosphorylated analogue, was explored.
2-Chloro N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate is a selective high affinity P2Y(1) receptor antagonist.[Pubmed:11959804]
Br J Pharmacol. 2002 Apr;135(8):2004-10.
1. We reported previously that bisphosphate derivatives of adenosine are antagonists of the P2Y(1) receptor and that modification of the ribose in these analogues is tolerated in the P2Y(1) receptor binding pharmacophore. 2. Here we delineate the pharmacological activity of one such non-nucleotide molecule, 2-chloro N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate (MRS2279), in which the ribose is replaced by a cyclopentane ring constrained in the (N)-conformation by a cyclopropane moiety. 3. MRS2279 antagonized 2MeSADP-stimulated inositol phosphate formation in turkey erythrocyte membranes with competitive kinetics (pK(B)=7.75). High affinity competitive antagonism by MRS2279 was also observed at the human P2Y(1) receptor (pK(B)=8.10) stably expressed in 1321N1 human astrocytoma cells. Antagonism was specific for the P2Y(1) receptor since MRS2279 had no effect on activation of the human P2Y(2), P2Y(4), P2Y(6), or P2Y(11) receptors by their cognate agonists. 4. MRS2279 also did not block the capacity of ADP to act through the Gi/adenylyl cyclase linked P2Y receptor of platelets to inhibit cyclic AMP accumulation. 5. In contrast, the P2Y(1) receptor is known to be obligatory in the process of ADP-induced platelet aggregation, and MRS2279 competitively inhibited ADP-promoted platelet aggregation with an apparent affinity (pK(B)=8.05) similar to that observed at the human P2Y(1) receptor heterologously expressed in 1321N1 cells. 6. Taken together these results illustrate selective high affinity antagonism of the P2Y(1) receptor by a non-nucleotide molecule that should prove useful for pharmacological delineation of this receptor in various tissues.
Synthesis, biological activity, and molecular modeling of ribose-modified deoxyadenosine bisphosphate analogues as P2Y(1) receptor ligands.[Pubmed:10715151]
J Med Chem. 2000 Mar 9;43(5):829-42.
The structure-activity relationships of adenosine-3', 5'-bisphosphates as P2Y(1) receptor antagonists have been explored, revealing the potency-enhancing effects of the N(6)-methyl group and the ability to substitute the ribose moiety (Nandanan et al. J. Med. Chem. 1999, 42, 1625-1638). We have introduced constrained carbocyclic rings (to explore the role of sugar puckering), non-glycosyl bonds to the adenine moiety, and a phosphate group shift. The biological activity of each analogue at P2Y(1) receptors was characterized by measuring its capacity to stimulate phospholipase C in turkey erythrocyte membranes (agonist effect) and to inhibit its stimulation elicited by 30 nM 2-methylthioadenosine-5'-diphosphate (antagonist effect). Addition of the N(6)-methyl group in several cases converted pure agonists to antagonists. A carbocyclic N(6)-methyl-2'-deoxyadenosine bisphosphate analogue was a pure P2Y(1) receptor antagonist and equipotent to the ribose analogue (MRS 2179). In the series of ring-constrained methanocarba derivatives where a fused cyclopropane moiety constrained the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle, the 6-NH(2) (N)-analogue was a pure agonist of EC(50) 155 nM and 86-fold more potent than the corresponding (S)-isomer. The 2-chloro-N(6)-methyl-(N)-methanocarba analogue was an antagonist of IC(50) 51.6 nM. Thus, the ribose ring (N)-conformation appeared to be favored in recognition at P2Y(1) receptors. A cyclobutyl analogue was an antagonist with IC(50) of 805 nM, while morpholine ring-containing analogues were nearly inactive. Anhydrohexitol ring-modified bisphosphate derivatives displayed micromolar potency as agonists (6-NH(2)) or antagonists (N(6)-methyl). A molecular model of the energy-minimized structures of the potent antagonists suggested that the two phosphate groups may occupy common regions. The (N)- and (S)-methanocarba agonist analogues were docked into the putative binding site of the previously reported P2Y(1) receptor model.