Ac2-26Annexin/lipocortin 1-mimetic; inhibits leukocyte extravasation CAS# 151988-33-9 |
2D Structure
- Amyloid β-Protein (1-15)
Catalog No.:BCC1003
CAS No.:183745-81-5
- Beta-Amyloid (1-11)
Catalog No.:BCC1002
CAS No.:190436-05-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 151988-33-9 | SDF | Download SDF |
PubChem ID | 16138723 | Appearance | Powder |
Formula | C141H210N32O44S | M.Wt | 3089.46 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | H2O Peptide Solubility and Storage Guidelines: 1. Calculate the length of the peptide. 2. Calculate the overall charge of the entire peptide according to the following table: 3. Recommended solution: | ||
Sequence | AMVSEFLKQAWFIENEEQEYVQTVK (Modifications: Ala-1 = N-terminal Ac) | ||
SMILES | CCC(C)C(C(=O)NC(CCC(=O)O)C(=O)NC(CC(=O)N)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(CCC(=O)O)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(C(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)O)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)O)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC3=CNC4=CC=CC=C43)NC(=O)C(C)NC(=O)C(CCC(=O)N)NC(=O)C(CCCCN)NC(=O)C(CC(C)C)NC(=O)C(CC5=CC=CC=C5)NC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)C)NC(=O)C(CCSC)NC(=O)C(C)NC(=O)C | ||
Standard InChIKey | ODWGEWZOPBDSHW-ISLQBSBZSA-N | ||
Standard InChI | InChI=1S/C141H210N32O44S/c1-16-73(10)115(139(214)160-93(48-56-111(190)191)126(201)167-101(66-106(147)181)132(207)157-90(45-53-108(184)185)123(198)155-89(44-52-107(182)183)122(197)154-87(42-50-104(145)179)121(196)156-91(46-54-109(186)187)124(199)165-99(64-80-37-39-82(177)40-38-80)133(208)170-112(70(4)5)136(211)159-88(43-51-105(146)180)127(202)173-116(76(13)175)140(215)171-114(72(8)9)137(212)161-95(141(216)217)36-26-28-59-143)172-134(209)98(63-79-31-21-18-22-32-79)166-131(206)100(65-81-67-148-84-34-24-23-33-83(81)84)162-118(193)75(12)150-119(194)86(41-49-103(144)178)153-120(195)85(35-25-27-58-142)152-129(204)96(61-69(2)3)163-130(205)97(62-78-29-19-17-20-30-78)164-125(200)92(47-55-110(188)189)158-135(210)102(68-174)168-138(213)113(71(6)7)169-128(203)94(57-60-218-15)151-117(192)74(11)149-77(14)176/h17-24,29-34,37-40,67,69-76,85-102,112-116,148,174-175,177H,16,25-28,35-36,41-66,68,142-143H2,1-15H3,(H2,144,178)(H2,145,179)(H2,146,180)(H2,147,181)(H,149,176)(H,150,194)(H,151,192)(H,152,204)(H,153,195)(H,154,197)(H,155,198)(H,156,196)(H,157,207)(H,158,210)(H,159,211)(H,160,214)(H,161,212)(H,162,193)(H,163,205)(H,164,200)(H,165,199)(H,166,206)(H,167,201)(H,168,213)(H,169,203)(H,170,208)(H,171,215)(H,172,209)(H,173,202)(H,182,183)(H,184,185)(H,186,187)(H,188,189)(H,190,191)(H,216,217)/t73-,74-,75-,76+,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,112-,113-,114-,115-,116-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Annexin/lipocortin 1-mimetic peptide; inhibits leukocyte extravasation. Reduces neutrophil adhesion and emigration, promotes detachment of neutrophils from activated mesenteric endothelium and accelerates epithelial wound repair after induced colonic injury in mice in vivo. Anti-inflammatory. |
Ac2-26 Dilution Calculator
Ac2-26 Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 6- Methoxydihydrosanguinarine
Catalog No.:BCN8346
CAS No.:151890-26-5
- 2-Phenylmelatonin
Catalog No.:BCC6748
CAS No.:151889-03-1
- Kinsenoside
Catalog No.:BCN3858
CAS No.:151870-74-5
- cAMPS-Rp, triethylammonium salt
Catalog No.:BCC8082
CAS No.:151837-09-1
- AC 187
Catalog No.:BCC6018
CAS No.:151804-77-2
- Montelukast Sodium
Catalog No.:BCC4680
CAS No.:151767-02-1
- 4,4'-Dihydroxy-2,6-dimethoxydihydrochalcone
Catalog No.:BCN3583
CAS No.:151752-08-8
- 2,2-Dimethyl-8-prenylchromene 6-carboxylic acid
Catalog No.:BCN1675
CAS No.:151731-50-9
- 5-Deoxystrigol
Catalog No.:BCN7693
CAS No.:151716-18-6
- SEP-0372814
Catalog No.:BCC6429
CAS No.:1516895-53-6
- H-D-Ser-OBzl.HCl
Catalog No.:BCC3097
CAS No.:151651-44-4
- 6-Prenylquercetin-3-methylether
Catalog No.:BCN7992
CAS No.:151649-34-2
- Verapamil HCl
Catalog No.:BCC4747
CAS No.:152-11-4
- Quinestrol
Catalog No.:BCC9132
CAS No.:152-43-2
- Vicine
Catalog No.:BCC8366
CAS No.:152-93-2
- Sophoricoside
Catalog No.:BCN2294
CAS No.:152-95-4
- Epothilone A
Catalog No.:BCC1091
CAS No.:152044-53-6
- Epothilone B (EPO906, Patupilone)
Catalog No.:BCC1092
CAS No.:152044-54-7
- Dp44mT
Catalog No.:BCC6518
CAS No.:152095-12-0
- 3,4-Dimethoxybenzamide
Catalog No.:BCN6565
CAS No.:1521-41-1
- 1,2-Epoxy-1-hydroxymethylpyrrolizidine
Catalog No.:BCN1557
CAS No.:15211-03-7
- Teuclatriol
Catalog No.:BCN1676
CAS No.:152110-17-3
- 2-chloro-11-cyclopentyl-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6(11H)-one
Catalog No.:BCC8568
CAS No.:1521197-43-2
- N,N'-Di-Boc-1H-pyrazole-1-carboxamidine
Catalog No.:BCC9065
CAS No.:152120-54-2
Ac2-26 Mimetic Peptide of Annexin A1 Inhibits Local and Systemic Inflammatory Processes Induced by Bothrops moojeni Venom and the Lys-49 Phospholipase A2 in a Rat Model.[Pubmed:26147724]
PLoS One. 2015 Jul 6;10(7):e0130803.
Annexin A1 (AnxA1) is an endogenous glucocorticoid regulated protein that modulates anti-inflammatory process and its therapeutic potential has recently been recognized in a range of systemic inflammatory disorders. The effect of the N-terminal peptide Ac2-26 of AnxA1 on the toxic activities of Bothrops moojeni crude venom (CV) and its myotoxin II (MjTX-II) were evaluated using a peritonitis rat model. Peritonitis was induced by the intraperitoneal injection of either CV or MjTX-II, a Lys-49 phospholipase A2. Fifteen minutes after the injection, the rats were treated with either Ac2-26 or PBS. Four hours later, the CV and MjTX-II-induced peritonitis were characterized by neutrophilia (in the peritoneal exudate, blood and mesentery) and increased number of mesenteric degranulated mast cells and macrophages. At 24 hours post-injection, the local inflammatory response was attenuated in the CV-induced peritonitis while the MjTX-II group exhibited neutrophilia (peritoneal exudates and blood). Ac2-26 treatment prevented the influx of neutrophils in MjTX-II-induced peritonitis and diminished the proportion of mesenteric degranulated mast cells and macrophages in CV-induced peritonitis. Additionally, CV and MjTX-II promoted increased levels of IL-1beta and IL-6 in the peritoneal exudates which were significantly reduced after Ac2-26 treatment. At 4 and 24 hours, the endogenous expression of AnxA1 was upregulated in the mesenteric neutrophils (CV and MjTX-II groups) and mast cells (CV group). In the kidneys, CV and MjTX-II administrations were associated with an increased number of macrophages and morphological alterations in the juxtamedullary nephrons in proximal and distal tubules. Ac2-26 promoted significant recovery of the juxtamedullary structures, decreased the number of macrophages and diminished the AnxA1 in epithelial cells from distal tubules and renal capsules. Our results show that Ac2-26 treatment significantly attenuates local and systemic inflammatory processes and indicate this peptide as a potential target for the development of new therapeutic strategies for the snakebite envenomation treatment.
Anti-inflammatory mechanisms of the annexin A1 protein and its mimetic peptide Ac2-26 in models of ocular inflammation in vivo and in vitro.[Pubmed:23645879]
J Immunol. 2013 Jun 1;190(11):5689-701.
Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1(-/-) mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-kappaB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-kappaB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach.
Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice.[Pubmed:25695999]
Sci Transl Med. 2015 Feb 18;7(275):275ra20.
Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2-26 (Ac2-26). Collagen IV (Col IV)-targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr(-/-) mice. When administered to mice with preexisting lesions, Col IV-Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.
Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair.[Pubmed:25664854]
J Clin Invest. 2015 Mar 2;125(3):1215-27.
Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.
Annexin 1: an endogenous anti-inflammatory protein.[Pubmed:12644621]
News Physiol Sci. 2003 Apr;18:60-4.
A hallmark of inflammation is the mobilization of blood-borne leukocytes across microvessels to kill and remove the invading pathogen. For its damaging potential, leukocyte movement is finely regulated, and endogenous pathways exist to ensure the time dependency of this process. Annexin 1 and its receptor(s) are one example of these pathways.
Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: effect of lipocortin 1.[Pubmed:9826735]
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14535-9.
In this study we investigated, using intravital microscopy, how neutrophil extravasation across mouse mesenteric postcapillary venules is inhibited by the glucocorticoid-regulated protein lipocortin (LC; also termed annexin) 1. Intraperitoneal injection of 1 mg of zymosan into mice induced neutrophil rolling on the activated mesenteric endothelium followed by adhesion (maximal at 2 hr: 5-6 cells per 100-micrometers of vessel length) and emigration (maximal at 4 hr: 8-10 cells per high-powered field). Treatment of mice with human recombinant LC1 (2 mg/kg s.c.) or its mimetic peptide Ac2-26 (13 mg/kg s.c.) did not modify cell rolling but markedly reduced (>/=50%) the degree of neutrophil adhesion and emigration (P < 0.05). Intravenous treatment with peptide Ac2-26 (13 mg/kg) or recombinant human LC1 (0.7-2 mg/kg) promoted detachment of neutrophils adherent to the endothelium 2 hr after zymosan administration, with adherent cells detaching within 4.12 +/- 0.75 min and 2.36 +/- 0.31 min, respectively (n = 20-25 cells). Recruitment of newly adherent cells to the endothelium was unaffected. The structurally related protein LC5 was inactive in this assay, whereas a chimeric molecule constructed from the N terminus of LC1 (49 aa) attached to the core region of LC5 produced cell detachment with kinetics similar to LC1. Removal of adherent neutrophils from activated postcapillary endothelium is a novel pharmacological action, and it is at this site where LC1 and its mimetics operate to down-regulate this aspect of the host inflammatory response.
Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil-dependent edema in the mouse. A qualitative comparison with an anti-CD11b monoclonal antibody.[Pubmed:8409403]
J Immunol. 1993 Oct 15;151(8):4306-14.
The activity of the steroid-inducible protein lipocortin-1 (LC1; with a primary sequence of 346 amino acids; also called annexin 1), a fragment corresponding to amino acids 1-188 and a short peptide from the N-terminus (amino acid 2-26) were tested for anti-inflammatory actions in three models of acute inflammation in the mouse in comparison with a mAb anti-CD11b (alpha CD11b). In the mouse air-pouch model LC1, fragment 1-188 and peptide Ac2-26 exhibited powerful inhibitory effects (ED50 approximately 5.2, 38 and 88 micrograms/mouse, respectively) on leukocyte migration elicited by IL-1. LC1 was approximately 200 times more potent than Ac2-26 on a molar basis although both gave maximal inhibitions, in contrast fragment 1-188 only produced a partial dose-response curve. LC1 was approximately 20 times more potent on a molar basis in this assay than the alpha CD11b mAb. Peptide Ac2-26 and the mAb alpha CD11b also blocked cell migration into the air-pouch induced by IL-8 with approximately the same potency. In the mouse skin edema and zymosan peritonitis assays Ac2-26 was inhibitory (ED50 of 200 micrograms/mouse) but less so than the alpha CD11b antibody (ED50 approximately 0.5 mg/mouse). Both LC1 (10 micrograms) and Ac2-26 (200 micrograms) completely blocked FMLP-induced neutropenia in the mouse. Studies using an inactivated LC1 preparation, which binds to the same high affinity binding sites as the biologically active material, indicated that the short peptide acts on the same sites as the native LC1. This study confirms the activity of LC1 in another model of experimental inflammation and suggests that it acts partly through inhibition of leukocyte activation with an overall effect qualitatively comparable to the blocking of CD11b portion of a beta 2-integrin complex. It also shows that peptides derived from the N-terminal domain of LC1 may mimic the activity of the full length molecule and points the way for a new family of anti-inflammatory substances that inhibit leukocyte trafficking.