Boc-Asn-OHCAS# 7536-55-2 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 7536-55-2 | SDF | Download SDF |
PubChem ID | 82035 | Appearance | Powder |
Formula | C9H16N2O5 | M.Wt | 232.2 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in water or 1% acetic acid | ||
Chemical Name | (2S)-4-amino-2-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxobutanoic acid | ||
SMILES | CC(C)(C)OC(=O)NC(CC(=O)N)C(=O)O | ||
Standard InChIKey | FYYSQDHBALBGHX-YFKPBYRVSA-N | ||
Standard InChI | InChI=1S/C9H16N2O5/c1-9(2,3)16-8(15)11-5(7(13)14)4-6(10)12/h5H,4H2,1-3H3,(H2,10,12)(H,11,15)(H,13,14)/t5-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Boc-Asn-OH Dilution Calculator
Boc-Asn-OH Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.3066 mL | 21.5332 mL | 43.0663 mL | 86.1326 mL | 107.6658 mL |
5 mM | 0.8613 mL | 4.3066 mL | 8.6133 mL | 17.2265 mL | 21.5332 mL |
10 mM | 0.4307 mL | 2.1533 mL | 4.3066 mL | 8.6133 mL | 10.7666 mL |
50 mM | 0.0861 mL | 0.4307 mL | 0.8613 mL | 1.7227 mL | 2.1533 mL |
100 mM | 0.0431 mL | 0.2153 mL | 0.4307 mL | 0.8613 mL | 1.0767 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Boc-Asn-OH
- Indacaterol Maleate
Catalog No.:BCC4358
CAS No.:753498-25-8
- Lovastatin
Catalog No.:BCN1060
CAS No.:75330-75-5
- H-Leucinol
Catalog No.:BCC2725
CAS No.:7533-40-6
- H-Pro-NH2
Catalog No.:BCC3018
CAS No.:7531-52-4
- Kukoamine A
Catalog No.:BCN3835
CAS No.:75288-96-9
- HEPES Sodium salt
Catalog No.:BCC7591
CAS No.:75277-39-3
- Nemonapride
Catalog No.:BCC7165
CAS No.:75272-39-8
- H-Trp-OMe.HCl
Catalog No.:BCC3114
CAS No.:7524-52-9
- H-Phe-OMe.HCl
Catalog No.:BCC3009
CAS No.:7524-50-7
- Ophiopogonanone A
Catalog No.:BCN6630
CAS No.:75239-63-3
- TAK-700 R-form
Catalog No.:BCC4203
CAS No.:752243-39-3
- 3,6-Bis(hydroxymethyl)durene
Catalog No.:BCC8598
CAS No.:7522-62-5
- Boc-Asp(OBzl)-OH
Catalog No.:BCC2608
CAS No.:7536-58-5
- EHT 1864
Catalog No.:BCC6075
CAS No.:754240-09-0
- Moxonidine
Catalog No.:BCC2142
CAS No.:75438-57-2
- CGP 37157
Catalog No.:BCC6943
CAS No.:75450-34-9
- N-Methylnuciferine
Catalog No.:BCN3971
CAS No.:754919-24-9
- Regorafenib
Catalog No.:BCC3646
CAS No.:755037-03-7
- BI 2536
Catalog No.:BCC2081
CAS No.:755038-02-9
- BI6727 (Volasertib)
Catalog No.:BCC3886
CAS No.:755038-65-4
- Flupirtine maleate
Catalog No.:BCC4456
CAS No.:75507-68-5
- Cedrin
Catalog No.:BCN4748
CAS No.:75513-81-4
- Nilvadipine
Catalog No.:BCC3799
CAS No.:75530-68-6
- Moxonidine hydrochloride
Catalog No.:BCC5163
CAS No.:75536-04-8
Applications of BOP reagent in solid phase synthesis. Advantages of BOP reagent for difficult couplings exemplified by a synthesis of [Ala 15]-GRF(1-29)-NH2.[Pubmed:2896637]
Int J Pept Protein Res. 1988 Jan;31(1):86-97.
The BOP reagent [benzotriazol-l-yl-oxy-tris-(dimethylamino)phosphonium hexa-fluorophosphate] introduced by Castro et al. [Tetrahedron Lett. (1975) 14, 1219-1222] is ideally suited for solid phase peptide synthesis. The rate of coupling using BOP compared favorably to DCC and other methods of activation including the symmetrical anhydride and DCC/HOBt procedures. BOP couplings using the solid phase procedure proceeded more rapidly and to a greater degree of completion for peptide bond formations that were previously determined to be very slow using the conventional DCC method. Stepwise solid phase peptide synthesis using BOP was successfully utilized for the preparation of the (22-29) and (13-29) fragments of [Ala15]-GRF(1-29)-NH2. Single couplings with 3 equiv. BOP and Boc-amino acids and 5.3 equiv. of diisopropylethylamine in DMF were used for each cycle. The yields of the fragments were superior and the purities comparable using the BOP procedure (single couplings) to those observed using multiple couplings via the DCC coupling method. A total synthesis of [Ala15]-GRF(1-29)-NH2 was also carried out using the BOP procedure (single couplings and 3 equiv. BOP and Boc-amino acids and 5.3 equiv. diisopropylethylamine in DMF for each cycle). Multiple couplings were only required for Boc-Asn-OH due to the proposed formation of Boc-aminosuccinimide during activation. The resultant GRF(1-29) analog was comparable to a control prepared with multiple DCC couplings under optimized conditions. In a parallel study, unprotected Boc-(hydroxy)-amino acids were successfully coupled with the BOP reagent. However, the number of coupling cycles after the introduction of unprotected hydroxy-amino acid must be minimal (less than 10). The use of the BOP reagent with unprotected Tyr in solid phase peptide synthesis was also clearly established.