CephalotaxineCAS# 24316-19-6 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 24316-19-6 | SDF | Download SDF |
PubChem ID | 65305 | Appearance | Powder |
Formula | C18H21NO4 | M.Wt | 315.4 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Synonyms | (-)-Cephalotaxine; ZINC19795976 | ||
Solubility | DMSO : ≥ 100 mg/mL (317.10 mM) *"≥" means soluble, but saturation unknown. | ||
SMILES | COC1=CC23CCCN2CCC4=CC5=C(C=C4C3C1O)OCO5 | ||
Standard InChIKey | YMNCVRSYJBNGLD-KURKYZTESA-N | ||
Standard InChI | InChI=1S/C18H21NO4/c1-21-15-9-18-4-2-5-19(18)6-3-11-7-13-14(23-10-22-13)8-12(11)16(18)17(15)20/h7-9,16-17,20H,2-6,10H2,1H3/t16-,17-,18+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Cephalotaxine is an antiviral as well as antitumor agent. It is useless for the treatment of infection by flaviviruses, but potentially useful in combined therapy against hepatitis B. |
Targets | HBV |
In vitro | Effect of cantharidin, cephalotaxine and homoharringtonine on [Pubmed: 17458779 ]Planta Med. 2007 Jun;73(6):552-8.The effect as antiviral agents versus viral hepatitis B and C of three compounds purified from natural products commonly used as remedies in traditional Chinese medicine, cantharidin, Cephalotaxine and homoharingtonine, was investigated. |
Kinase Assay | Molecular Docking and Binding Mode Analysis of Plant Alkaloids as in vitro and in silico Inhibitors of Trypanothione Reductase from Trypanosoma cruzi.[Pubmed: 26996020]Nat Prod Commun. 2016 Jan;11(1):57-62.Trypanothione reductase (TryR) is a key enzyme in the metabolism of Trypanosoma cruzi, the parasite responsible for Chagas disease. The available repertoire of TryR inhibitors relies heavily on synthetic substrates of limited structural diversity, and less on plant-derived natural products. |
Cephalotaxine Dilution Calculator
Cephalotaxine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.1706 mL | 15.8529 mL | 31.7058 mL | 63.4115 mL | 79.2644 mL |
5 mM | 0.6341 mL | 3.1706 mL | 6.3412 mL | 12.6823 mL | 15.8529 mL |
10 mM | 0.3171 mL | 1.5853 mL | 3.1706 mL | 6.3412 mL | 7.9264 mL |
50 mM | 0.0634 mL | 0.3171 mL | 0.6341 mL | 1.2682 mL | 1.5853 mL |
100 mM | 0.0317 mL | 0.1585 mL | 0.3171 mL | 0.6341 mL | 0.7926 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Scandine
Catalog No.:BCN5099
CAS No.:24314-59-8
- Hesperidin methylchalcone
Catalog No.:BCN8125
CAS No.:24292-52-2
- Mycophenolic acid
Catalog No.:BCC4803
CAS No.:24280-93-1
- Boc-Glu-OtBu
Catalog No.:BCC3388
CAS No.:24277-39-2
- Sodium ferulic
Catalog No.:BCN8542
CAS No.:24276-84-4
- Acetylcephalotaxine
Catalog No.:BCN5098
CAS No.:24274-60-0
- Cannabidivarin
Catalog No.:BCN7536
CAS No.:24274-48-4
- Furanodienone
Catalog No.:BCN3010
CAS No.:24268-41-5
- Shikokianin
Catalog No.:BCN3278
CAS No.:24267-69-4
- 7-Methoxy-8-Hydroxy-4-Phenylcoumarin
Catalog No.:BCC8292
CAS No.:24258-36-4
- H-Phe(4-I)-OH
Catalog No.:BCC3259
CAS No.:24250-85-9
- H-Phe(4-Br)-OH
Catalog No.:BCC3157
CAS No.:24250-84-8
- 9-Fluorenylmethanol
Catalog No.:BCC2801
CAS No.:24324-17-2
- Tricosanoic acid
Catalog No.:BCN5394
CAS No.:2433-96-7
- Nagilactone C
Catalog No.:BCN4040
CAS No.:24338-53-2
- 6-Amino-1-methyluracil
Catalog No.:BCC8757
CAS No.:2434-53-9
- Apamin
Catalog No.:BCC7141
CAS No.:24345-16-2
- S-(5'-Adenosyl)-L-methionine chloride
Catalog No.:BCN2229
CAS No.:24346-00-7
- 3,5-Cycloergosta-6,8(14),22-triene
Catalog No.:BCN5100
CAS No.:24352-51-0
- (-)-alpha-Pinene
Catalog No.:BCC8295
CAS No.:2437-95-8
- Bufexamac
Catalog No.:BCC4427
CAS No.:2438-72-4
- L-(-)-Fucose
Catalog No.:BCN8326
CAS No.:2438-80-4
- pep2m
Catalog No.:BCC5782
CAS No.:243843-42-7
- pep4c
Catalog No.:BCC5783
CAS No.:243843-43-8
Molecular Docking and Binding Mode Analysis of Plant Alkaloids as in vitro and in silico Inhibitors of Trypanothione Reductase from Trypanosoma cruzi.[Pubmed:26996020]
Nat Prod Commun. 2016 Jan;11(1):57-62.
Trypanothione reductase (TryR) is a key enzyme in the metabolism of Trypanosoma cruzi, the parasite responsible for Chagas disease. The available repertoire of TryR inhibitors relies heavily on synthetic substrates of limited structural diversity, and less on plant-derived natural products. In this study, a molecular docking procedure using a Lamarckian Genetic Algorithm was implemented to examine the protein-ligand binding interactions of strong in vitro inhibitors for which no X-ray data is available. In addition, a small, skeletally diverse, set of natural alkaloids was assessed computationally against T. cruzi TryR in search of new scaffolds for lead development. The preferential binding mode (low number of clusters, high cluster population), together with the deduced binding interactions were used to discriminate among the virtual inhibitors. This study confirms the prior in vitro data and proposes quebrachamine, Cephalotaxine, cryptolepine, (22S,25S)-tomatidine, (22R,25S)-solanidine, and (22R,25R)-solasodine as new alkaloid scaffold leads in the search for more potent and selective TryR inhibitors.
Effect of cantharidin, cephalotaxine and homoharringtonine on "in vitro" models of hepatitis B virus (HBV) and bovine viral diarrhoea virus (BVDV) replication.[Pubmed:17458779]
Planta Med. 2007 Jun;73(6):552-8.
The effect as antiviral agents versus viral hepatitis B and C of three compounds purified from natural products commonly used as remedies in traditional Chinese medicine, cantharidin, Cephalotaxine and homoharingtonine, was investigated. To assess the activity of these compounds against flavivirus, we used bovine viral diarrhoea virus (BVDV) as a surrogate for hepatitis C virus (HCV). Anti-BVDV activity was determined by reduction in BVDV-RNA production and protection of infected embryonic bovine trachea (EBTr) cells against the cytopathic effect of BVDV. The effect versus hepatitis B virus (HBV) was investigated by measuring HBsAg and HBV-DNA release from hepatoblastoma HepG2 2.2.15 cells infected with HBV. As positive control we used the standard anti-HBV and anti-HCV drugs, lamivudine and ribavirin, respectively. Up to 100 microM lamivudine and ribavirin did not induce cell toxicity, whereas they induced dose-dependent anti-HBV and anti-BVDV effects, respectively. In the same range, cantharidin, Cephalotaxine and homoharringtonine induced toxicity in EBTr cells and had no protective effect against BVDV. In contrast, they were able to inhibit HBV production at concentrations 10- to 100-fold lower than those inducing cell toxicity, which suggests that they are useless for the treatment of infection by flaviviruses, but potentially useful in combined therapy against hepatitis B.