pep4cInactive control peptide for pep2m CAS# 243843-43-8 |
- CGS 21680
Catalog No.:BCC1475
CAS No.:120225-54-9
- CGS 21680 HCl
Catalog No.:BCC4316
CAS No.:124431-80-7
- Valsartan
Catalog No.:BCC5017
CAS No.:137862-53-4
- Istradefylline (KW-6002)
Catalog No.:BCC3798
CAS No.:155270-99-8
- Ticlopidine HCl
Catalog No.:BCC4973
CAS No.:53885-35-1
- Tozadenant
Catalog No.:BCC2011
CAS No.:870070-55-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 243843-43-8 | SDF | Download SDF |
PubChem ID | 90471151 | Appearance | Powder |
Formula | C48H91N17O13S | M.Wt | 1146.42 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | GluR4c<sub>r</sub> | ||
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | KRMKVAKSAQ | ||
Chemical Name | (2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-4-methylsulfanylbutanoyl]amino]hexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]propanoyl]amino]-5-oxopentanoic acid | ||
SMILES | CC(C)C(C(=O)NC(C)C(=O)NC(CCCCN)C(=O)NC(CO)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCSC)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)N | ||
Standard InChIKey | PUDVEKDEUNWDBZ-SKYKFSGJSA-N | ||
Standard InChI | InChI=1S/C48H91N17O13S/c1-26(2)37(46(76)58-28(4)38(68)59-30(14-7-10-21-50)42(72)64-35(25-66)45(75)57-27(3)39(69)63-34(47(77)78)17-18-36(53)67)65-44(74)31(15-8-11-22-51)61-43(73)33(19-24-79-5)62-41(71)32(16-12-23-56-48(54)55)60-40(70)29(52)13-6-9-20-49/h26-35,37,66H,6-25,49-52H2,1-5H3,(H2,53,67)(H,57,75)(H,58,76)(H,59,68)(H,60,70)(H,61,73)(H,62,71)(H,63,69)(H,64,72)(H,65,74)(H,77,78)(H4,54,55,56)/t27-,28-,29-,30-,31-,32-,33-,34-,35-,37-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Inactive control peptide analog of pep2m, a peptide inhibitor of the interaction between the C-terminus of the GluR2 (AMPA receptor) subunit and N-ethylmaleimide-sensitive fusion protein (NSF). |
pep4c Dilution Calculator
pep4c Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- pep2m
Catalog No.:BCC5782
CAS No.:243843-42-7
- L-(-)-Fucose
Catalog No.:BCN8326
CAS No.:2438-80-4
- Bufexamac
Catalog No.:BCC4427
CAS No.:2438-72-4
- (-)-alpha-Pinene
Catalog No.:BCC8295
CAS No.:2437-95-8
- 3,5-Cycloergosta-6,8(14),22-triene
Catalog No.:BCN5100
CAS No.:24352-51-0
- S-(5'-Adenosyl)-L-methionine chloride
Catalog No.:BCN2229
CAS No.:24346-00-7
- Apamin
Catalog No.:BCC7141
CAS No.:24345-16-2
- 6-Amino-1-methyluracil
Catalog No.:BCC8757
CAS No.:2434-53-9
- Nagilactone C
Catalog No.:BCN4040
CAS No.:24338-53-2
- Tricosanoic acid
Catalog No.:BCN5394
CAS No.:2433-96-7
- 9-Fluorenylmethanol
Catalog No.:BCC2801
CAS No.:24324-17-2
- Cephalotaxine
Catalog No.:BCN2957
CAS No.:24316-19-6
- Glycoside L-F2
Catalog No.:BCN2158
CAS No.:243857-99-0
- 5-Iodotubercidin
Catalog No.:BCC1312
CAS No.:24386-93-4
- Kynurenic acid sodium salt
Catalog No.:BCC7754
CAS No.:2439-02-3
- Ethyl 4-methoxycinnamate
Catalog No.:BCN5028
CAS No.:24393-56-4
- Cnicin
Catalog No.:BCN8546
CAS No.:24394-09-0
- TCS 401
Catalog No.:BCC2469
CAS No.:243967-42-2
- TAK-242 S enantiomer
Catalog No.:BCC1978
CAS No.:243984-10-3
- TAK-242
Catalog No.:BCC1977
CAS No.:243984-11-4
- beta-D-glucose
Catalog No.:BCN8171
CAS No.:492-61-5
- (+)-Epipinoresinol
Catalog No.:BCN3255
CAS No.:24404-50-0
- Beta-Rotunol
Catalog No.:BCN6628
CAS No.:24405-57-0
- L-798,106
Catalog No.:BCC7654
CAS No.:244101-02-8
Functional roles of protein interactions with AMPA and kainate receptors.[Pubmed:12941441]
Neurosci Res. 2003 Sep;47(1):3-15.
The glutamate receptor subtypes AMPA and kainate are involved in synaptic transmission and synaptic plasticity in the CNS. Recently there has been considerable interest in understanding the molecular regulation of these receptors by proteins that directly bind to AMPA and kainate receptor subunits. Amongst the first interaction partners to be discovered were NSF, ABP, GRIP and PICK1, which bind the AMPA receptor subunit GLUA2. We have studied the functional roles of the interactions of these proteins in regulating AMPA receptor-mediated synaptic transmission and synaptic plasticity in the hippocampus. We have also started to investigate the functions of PICK1 and GRIP on kainate receptor-mediated synaptic transmission in this region. In this article we reflect upon this work, which has led to some new ideas about how AMPA and kainate receptors are regulated at synapses.
Role of AMPA receptor cycling in synaptic transmission and plasticity.[Pubmed:10595516]
Neuron. 1999 Nov;24(3):649-58.
Compounds known to disrupt exocytosis or endocytosis were introduced into CA1 pyramidal cells while monitoring excitatory postsynaptic currents (EPSCs). Disrupting exocytosis or the interaction of GluR2 with NSF caused a gradual reduction in the AMPAR EPSC, while inhibition of endocytosis caused a gradual increase in the AMPAR EPSC. These manipulations had no effect on the NMDAR EPSC but prevented the subsequent induction of LTD. These results suggest that AMPARs, but not NMDARs, cycle into and out of the synaptic membrane at a rapid rate and that certain forms of synaptic plasticity may utilize this dynamic process.
Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction.[Pubmed:10571232]
Neuron. 1999 Oct;24(2):389-99.
We investigated whether the interaction between the N-ethyl-maleimide-sensitive fusion protein (NSF) and the AMPA receptor (AMPAR) subunit GluR2 is involved in synaptic plasticity in the CA1 region of the hippocampus. Blockade of the NSF-GluR2 interaction by a specific peptide (pep2m) introduced into neurons prevented homosynaptic, de novo long-term depression (LTD). Moreover, saturation of LTD prevented the pep2m-induced reduction in AMPAR-mediated excitatory postsynaptic currents (EPSCs). Minimal stimulation experiments indicated that both pep2m action and LTD were due to changes in quantal size and quantal content but were not associated with changes in AMPAR single-channel conductance or EPSC kinetics. These results suggest that there is a pool of AMPARs dependent on the NSF-GluR2 interaction and that LTD expression involves the removal of these receptors from synapses.
Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism.[Pubmed:10399941]
Neuron. 1999 Jun;23(2):365-76.
Here, we show that disruption of N-ethylmaleimide-sensitive fusion protein- (NSF-) GluR2 interaction by infusion into cultured hippocampal neurons of a blocking peptide (pep2m) caused a rapid decrease in the frequency but no change in the amplitude of AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). N-methyl-D-aspartate (NMDA) receptor-mediated mEPSCs were not changed. Viral expression of pep2m reduced the surface expression of alpha-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptors, whereas NMDA receptor surface expression in the same living cells was unchanged. In permeabilized neurons, the total amount of GluR2 immunoreactivity was unchanged, and a punctate distribution of GluR2 was observed throughout the dendritic tree. These data suggest that the NSF-GluR2 interaction is required for the surface expression of GluR2-containing AMPA receptors and that disruption of the interaction leads to the functional elimination of AMPA receptors at synapses.
NSF binding to GluR2 regulates synaptic transmission.[Pubmed:9697854]
Neuron. 1998 Jul;21(1):87-97.
Here, we show that N-ethylmaleimide-sensitive fusion protein (NSF) interacts directly and selectively with the intracellular C-terminal domain of the GluR2 subunit of AMPA receptors. The interaction requires all three domains of NSF but occurs between residues Lys-844 and Gln-853 of rat GluR2, with Asn-851 playing a critical role. Loading of decapeptides corresponding to the NSF-binding domain of GluR2 into rat hippocampal CA1 pyramidal neurons results in a marked, progressive decrement of AMPA receptor-mediated synaptic transmission. This reduction in synaptic transmission was also observed when an anti-NSF monoclonal antibody (mAb) was loaded into CA1 neurons. These results demonstrate a previously unsuspected direct interaction in the postsynaptic neuron between two major proteins involved in synaptic transmission and suggest a rapid NSF-dependent modulation of AMPA receptor function.