CnicinCAS# 24394-09-0 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 24394-09-0 | SDF | Download SDF |
PubChem ID | 5281435 | Appearance | White powder |
Formula | C20H26O7 | M.Wt | 378.4 |
Type of Compound | Isoprenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in ethanol and methanol; sparingly soluble in water | ||
Chemical Name | [(3aR,4S,6E,10Z,11aR)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-4-yl] (3R)-3,4-dihydroxy-2-methylidenebutanoate | ||
SMILES | CC1=CCCC(=CC2C(C(C1)OC(=O)C(=C)C(CO)O)C(=C)C(=O)O2)CO | ||
Standard InChIKey | ZTDFZLVUIVPZDU-QGNHJMHWSA-N | ||
Standard InChI | InChI=1S/C20H26O7/c1-11-5-4-6-14(9-21)8-17-18(13(3)20(25)27-17)16(7-11)26-19(24)12(2)15(23)10-22/h5,8,15-18,21-23H,2-4,6-7,9-10H2,1H3/b11-5+,14-8-/t15-,16-,17+,18+/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Cnicin Dilution Calculator
Cnicin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.6427 mL | 13.2135 mL | 26.4271 mL | 52.8541 mL | 66.0677 mL |
5 mM | 0.5285 mL | 2.6427 mL | 5.2854 mL | 10.5708 mL | 13.2135 mL |
10 mM | 0.2643 mL | 1.3214 mL | 2.6427 mL | 5.2854 mL | 6.6068 mL |
50 mM | 0.0529 mL | 0.2643 mL | 0.5285 mL | 1.0571 mL | 1.3214 mL |
100 mM | 0.0264 mL | 0.1321 mL | 0.2643 mL | 0.5285 mL | 0.6607 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Ethyl 4-methoxycinnamate
Catalog No.:BCN5028
CAS No.:24393-56-4
- Kynurenic acid sodium salt
Catalog No.:BCC7754
CAS No.:2439-02-3
- 5-Iodotubercidin
Catalog No.:BCC1312
CAS No.:24386-93-4
- Glycoside L-F2
Catalog No.:BCN2158
CAS No.:243857-99-0
- pep4c
Catalog No.:BCC5783
CAS No.:243843-43-8
- pep2m
Catalog No.:BCC5782
CAS No.:243843-42-7
- L-(-)-Fucose
Catalog No.:BCN8326
CAS No.:2438-80-4
- Bufexamac
Catalog No.:BCC4427
CAS No.:2438-72-4
- (-)-alpha-Pinene
Catalog No.:BCC8295
CAS No.:2437-95-8
- 3,5-Cycloergosta-6,8(14),22-triene
Catalog No.:BCN5100
CAS No.:24352-51-0
- S-(5'-Adenosyl)-L-methionine chloride
Catalog No.:BCN2229
CAS No.:24346-00-7
- Apamin
Catalog No.:BCC7141
CAS No.:24345-16-2
- TCS 401
Catalog No.:BCC2469
CAS No.:243967-42-2
- TAK-242 S enantiomer
Catalog No.:BCC1978
CAS No.:243984-10-3
- TAK-242
Catalog No.:BCC1977
CAS No.:243984-11-4
- beta-D-glucose
Catalog No.:BCN8171
CAS No.:492-61-5
- (+)-Epipinoresinol
Catalog No.:BCN3255
CAS No.:24404-50-0
- Beta-Rotunol
Catalog No.:BCN6628
CAS No.:24405-57-0
- L-798,106
Catalog No.:BCC7654
CAS No.:244101-02-8
- Taxumairol R
Catalog No.:BCN6939
CAS No.:244167-04-2
- L-748,337
Catalog No.:BCC7475
CAS No.:244192-94-7
- Pulchinenoside E2
Catalog No.:BCN8186
CAS No.:244202-36-6
- Celaphanol A
Catalog No.:BCN5101
CAS No.:244204-40-8
- JTC-801
Catalog No.:BCC3800
CAS No.:244218-51-7
Antimyeloma activity of the sesquiterpene lactone cnicin: impact on Pim-2 kinase as a novel therapeutic target.[Pubmed:22205266]
J Mol Med (Berl). 2012 Jun;90(6):681-93.
Despite recent advances in therapy, multiple myeloma, the second most common hematologic tumor in the Western world, is still incurable. Identification of substances that display a wide range of tumor-killing activities and target cancer-specific pathways constitute a basis for the development of novel therapies. In this study, we investigate the cytotoxic effect of the natural substance Cnicin in multiple myeloma. Cnicin treatment reveals potent antiproliferative effects and induces cell death in cell lines and primary myeloma cells even in the presence of survival cytokines and the tumor microenvironment. Other cell lines of hematopoietic origin also succumb to cell death whereas stromal cells and endothelial cells are unaffected. We show that activation of caspases, accumulation of reactive oxygen species and downregulation of nuclear factor kappa-light-chain-enhancer of activated B cell contribute to the cytotoxic effects of Cnicin. Microarray analysis reveals downregulation of Pim-2, a serine/threonine kinase. We provide evidence that Pim-2 constitutes a new survival kinase for myeloma cells in vitro and is highly expressed in malignant but not in normal plasma cells in vivo. Combining Cnicin with current standard or experimental therapeutics leads to enhanced cell death. Thus, our data indicate that Cnicin induces myeloma cell death via several pathways and reveals Pim-2 as a novel target. These findings provide a rational for further evaluation of Cnicin as a new anti-tumor drug and underline the potential of sesquiterpene lactones in tumor therapy.