Home >> Research Area >>Natural Products>>Aliphatics>> Ethyl palmitoleate

Ethyl palmitoleate

CAS# 56219-10-4

Ethyl palmitoleate

2D Structure

Catalog No. BCX1377----Order now to get a substantial discount!

Product Name & Size Price Stock
Ethyl palmitoleate: 5mg Please Inquire In Stock
Ethyl palmitoleate: 10mg Please Inquire In Stock
Ethyl palmitoleate: 20mg Please Inquire Please Inquire
Ethyl palmitoleate: 50mg Please Inquire Please Inquire
Ethyl palmitoleate: 100mg Please Inquire Please Inquire
Ethyl palmitoleate: 200mg Please Inquire Please Inquire
Ethyl palmitoleate: 500mg Please Inquire Please Inquire
Ethyl palmitoleate: 1000mg Please Inquire Please Inquire

Quality Control of Ethyl palmitoleate

3D structure

Package In Stock

Ethyl palmitoleate

Number of papers citing our products

Chemical Properties of Ethyl palmitoleate

Cas No. 56219-10-4 SDF Download SDF
PubChem ID 6436624.0 Appearance Powder
Formula C18H34O2 M.Wt 282.47
Type of Compound Aliphatics Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name ethyl (Z)-hexadec-9-enoate
SMILES CCCCCCC=CCCCCCCCC(=O)OCC
Standard InChIKey JELGPLUONQGOHF-KTKRTIGZSA-N
Standard InChI InChI=1S/C18H34O2/c1-3-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20-4-2/h9-10H,3-8,11-17H2,1-2H3/b10-9-
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Ethyl palmitoleate Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Ethyl palmitoleate Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Ethyl palmitoleate

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.5402 mL 17.701 mL 35.402 mL 70.804 mL 88.505 mL
5 mM 0.708 mL 3.5402 mL 7.0804 mL 14.1608 mL 17.701 mL
10 mM 0.354 mL 1.7701 mL 3.5402 mL 7.0804 mL 8.8505 mL
50 mM 0.0708 mL 0.354 mL 0.708 mL 1.4161 mL 1.7701 mL
100 mM 0.0354 mL 0.177 mL 0.354 mL 0.708 mL 0.885 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Ethyl palmitoleate

Phytocompounds of Nigella sativa seeds extract and their neuroprotective potential via EGR1 receptor inhibition: A molecular docking study.[Pubmed:38454971]

Narra J. 2023 Aug;3(2):e173.

Bioactivity of Nigella sativa seed extract has the potential as a neuro-protector, offering its promising utility in the clinical setting for brain injury management. This study aimed to identify the phytocompounds contained in the extract of N. sativa seeds and further screen their respective neuronal anti-inflammatory activities in silico. The extract of N. sativa seeds was prepared through successive maceration using non-polar to polar solvents (n-hexane and ethanol, respectively). The phytocompounds in the ethanolic extract were initially identified through qualitative analysis and further analyzed with gas chromatography-mass spectrometry (GC-MS). The spectral data were compared with the compound library for identification. The identified phytocompounds were then simulated computationally for their binding affinities toward the active pocket of early growth response-1 (EGR1) receptor (PDB: 14r2a). We found that the ethanolic extract of N. sativa seeds were predominantly constituted of hexadecanoic acid, ethyl ester (17.15%); linoleic acid ethyl ester (15.0%); octadecanoic acid (13.26%); and ethyl oleate (10.38%). The binding affinity of the phytocompounds ranged from -7.49 kcal/mol (mEthyl palmitoleate) to -14.31 kcal/mol (9-hexadecanoic acid, methyl ester), with 12 compounds having binding affinity < -10 kcal/mol. In conclusion, ethanolic extract of N. sativa seeds are rich with fatty acids that have active as anti-inflammatory and may exert neuronal protection by inhibiting EGR1 receptor. Studies using animal models to confirm the activity are warranted.

New insights into changing honey bee (Apis mellifera) immunity molecules pattern and fatty acid esters, in responses to Ascosphaera apis infection.[Pubmed:38065241]

J Invertebr Pathol. 2024 Feb;202:108028.

Monitoring of metabolite changes could provide valuable insights into disturbances caused by an infection and furthermore, could be used to define the status of an organism as healthy or diseased and define what could be defensive elements against the infection. The present investigation conducted a gas chromatography-mass spectrometry (GC/MS) for haemolymph of larval honey bees (Apis mellifera L.) infected with the fungal pathogen Ascosphaera apis in comparison with control haemolymph non-infected insects. Results revealed that the pathogen caused a general disturbance of metabolites detected in the haemolymph of the honey bee. The majority of metabolites identified before and after infection were fatty acid esters. The disease caused an elevation in levels of methyl oleate, methyl palmitate, and methyl stearate, respectively. Further, the disease drove to the disappearance of mEthyl palmitoleate, and methyl laurate. Conversely, methyl linolelaidate, and ethyl oleate were identified only in infected larvae. A high reduction in diisooctyl phthalate was recorded after the infection. Interestingly, antimicrobial activities were confirmed for haemolymph of infected honey bee larvae. In spite of the presence of some previously known bioactive compounds in healthy larvae there were no antimicrobial activities.

Poria cocos (Schw.) Wolf, a Traditional Chinese Edible Medicinal Herb, Promotes Neuronal Differentiation, and the Morphological Maturation of Newborn Neurons in Neural Stem/Progenitor Cells.[Pubmed:38005201]

Molecules. 2023 Nov 8;28(22):7480.

Neurogenesis in the adult brain comprises the entire set of events of neuronal development. It begins with the division of precursor cells to form a mature, integrated, and functioning neuronal network. Adult neurogenesis is believed to play an important role in animals' cognitive abilities, including learning and memory. In the present study, significant neuronal differentiation-promoting activity of 80% (v/v) ethanol extract of P. cocos (EEPC) was found in Neuro-2a cells and mouse cortical neural stem/progenitor cells (NSPCs). Subsequently, a total of 97 compounds in EEPC were identified by UHPLC-Q-Exactive-MS/MS. Among them, four major compounds-Adenosine; Choline; Ethyl palmitoleate; and L-(-)-arabinitol-were further studied for their neuronal differentiation-promoting activity. Of which, choline has the most significant neuronal differentiation-promoting activity, indicating that choline, as the main bioactive compound in P. cocos, may have a positive effect on learning and memory functions. Compared with similar research literature, this is the first time that the neuronal differentiation-promoting effects of P. cocos extract have been studied.

Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Bactrocera frauenfeldi (Schiner).[Pubmed:32168881]

Molecules. 2020 Mar 11;25(6):1275.

Bactrocera frauenfeldi (Schiner) (Diptera: Tephritidae) is a polyphagous fruit fly pest species that is endemic to Papua New Guinea and has become established in several Pacific Islands and Australia. Despite its economic importance for many crops and the key role of chemical-mediated sexual communication in the reproductive biology of tephritid fruit flies, as well as the potential application of pheromones as attractants, there have been no studies investigating the identity or activity of rectal gland secretions or emission profiles of this species. The present study (1) identifies the chemical profile of volatile compounds produced in rectal glands and released by B. frauenfeldi, (2) investigates which of the volatile compounds elicit an electroantennographic or electropalpographic response, and (3) investigates the potential function of glandular emissions as mate-attracting sex pheromones. Rectal gland extracts and headspace collections from sexually mature males and females of B. frauenfeldi were analysed by gas chromatography-mass spectrometry. Male rectal glands contained (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro [5.5]undecane as a major component and (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane as a moderate component. Minor components included palmitoleic acid, palmitic acid, and ethyl oleate. In contrast, female rectal glands contained (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and ethyl laurate as major components, ethyl myristate and Ethyl palmitoleate as moderate components, and 18 minor compounds including amides, esters, and spiroacetals. Although fewer compounds were detected from the headspace collections of both males and females than from the gland extractions, most of the abundant chemicals in the rectal gland extracts were also detected in the headspace collections. Gas chromatography coupled electroantennographic detection found responses to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane from the antennae of both male and female B. frauenfeldi. Responses to (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane were elicited from the antennae of females but not males. The two spiroacetals also elicited electropalpographic responses from both male and female B. frauenfeldi. Ethyl caprate and methyl laurate, found in female rectal glands, elicited responses in female antennae and palps, respectively. Y-maze bioassays showed that females were attracted to the volatiles from male rectal glands but males were not. Neither males nor females were attracted to the volatiles from female rectal glands. Our findings suggest (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane as components of a sex-attracting pheromone in B. frauenfeldi.

Keywords:

Ethyl palmitoleate,56219-10-4,Natural Products, buy Ethyl palmitoleate , Ethyl palmitoleate supplier , purchase Ethyl palmitoleate , Ethyl palmitoleate cost , Ethyl palmitoleate manufacturer , order Ethyl palmitoleate , high purity Ethyl palmitoleate

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: