Ganolucidic acid ECAS# 114567-50-9 |
2D Structure
Quality Control & MSDS
Package In Stock
Number of papers citing our products
Cas No. | 114567-50-9 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Powder |
Formula | C30H44O5 | M.Wt | 484.7 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Ganolucidic acid E Dilution Calculator
Ganolucidic acid E Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0631 mL | 10.3157 mL | 20.6313 mL | 41.2626 mL | 51.5783 mL |
5 mM | 0.4126 mL | 2.0631 mL | 4.1263 mL | 8.2525 mL | 10.3157 mL |
10 mM | 0.2063 mL | 1.0316 mL | 2.0631 mL | 4.1263 mL | 5.1578 mL |
50 mM | 0.0413 mL | 0.2063 mL | 0.4126 mL | 0.8253 mL | 1.0316 mL |
100 mM | 0.0206 mL | 0.1032 mL | 0.2063 mL | 0.4126 mL | 0.5158 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Caffeoylcalleryanin
Catalog No.:BCX0031
CAS No.:20300-49-6
- Odontoside
Catalog No.:BCX0030
CAS No.:20300-50-9
- Catechin 7-O-beta-D-glucopyranoside
Catalog No.:BCX0029
CAS No.:65597-47-9
- 5-O-Coumaroylquinic acid
Catalog No.:BCX0028
CAS No.:32451-86-8
- Gossypetin 3-sophoroside-8-glucoside
Catalog No.:BCX0027
CAS No.:77306-93-5
- Alopecurone A
Catalog No.:BCX0026
CAS No.:162558-89-6
- Kidjolanin
Catalog No.:BCX0025
CAS No.:38395-01-6
- Hainanic acid B
Catalog No.:BCX0024
CAS No.:1637737-46-2
- 5-Hydroxy-4a,8-dimethyl-3-methylen-decahydroazuleno[6,5-b]furan-2(3H)-on
Catalog No.:BCX0023
CAS No.:114579-31-6
- Ganoderic acid GS-3
Catalog No.:BCX0022
CAS No.:1206781-66-9
- Sophoraflavone A
Catalog No.:BCX0021
CAS No.:105594-08-9
- 12beta-Acetoxy-3,7,11,15,23-pentaoxo-lanost-8,20-dien-26-oic acid
Catalog No.:BCX0020
CAS No.:1309931-91-6
- Apigenin-6-C-beta-D-glucopyranosyl-8-C-[alpha-L-rhamnopyranosyl-(1->2)]-beta-glucopyranoside
Catalog No.:BCX0033
CAS No.:1646598-06-2
- Tembetarine
Catalog No.:BCX0034
CAS No.:18446-73-6
- Scoparin
Catalog No.:BCX0035
CAS No.:301-16-6
- (Z)-Ferulic acid 4-O-beta-D-glucoside
Catalog No.:BCX0036
CAS No.:94942-20-8
- Methyl ganoderate A
Catalog No.:BCX0037
CAS No.:105742-78-7
- (3,4-Dihydroxyphenyl)methyl 3-(beta-D-glucopyranosyloxy)-4-hydroxybenzoate
Catalog No.:BCX0038
CAS No.:877461-90-0
- Bayin
Catalog No.:BCX0039
CAS No.:3681-96-7
- Ganoderic acid GS-2
Catalog No.:BCX0040
CAS No.:1206781-65-8
- Ephedrannin D1
Catalog No.:BCX0041
CAS No.:1592431-55-4
- Ganoderic acid beta
Catalog No.:BCX0042
CAS No.:217476-76-1
- Methyl ganoderate B
Catalog No.:BCX0043
CAS No.:81907-65-5
- Oblongaroside B
Catalog No.:BCX0044
CAS No.:1000889-11-1
Distinct Responses of Cytotoxic Ganoderma lucidum Triterpenoids in Human Carcinoma Cells.[Pubmed:26292672]
Phytother Res. 2015 Nov;29(11):1744-52.
The medicinal mushroom Ganoderma lucidum is well recognized for its effective cancer-preventative and therapeutic properties, while specific components responsible for these anticancer effects are not well studied. Six triterpenoids that are Ganolucidic acid E, lucidumol A, ganodermanontriol, 7-oxo-ganoderic acid Z, 15-hydroxy-ganoderic acid S, and ganoderic acid DM were isolated and identified from an extract of the mushroom. All compounds reduced cell growth in three human carcinoma cells (Caco-2, HepG2, and HeLa cells) dose dependently with LC50s from 20.87 to 84.36 muM. Moreover, the six compounds induced apoptosis in HeLa cells with a maximum increase (22%) of sub-G1 accumulations and 43.03% apoptotic cells in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (15-hydroxy-ganoderic acid S treatment). Apoptosis was further confirmed by annexin-V staining. Four of the compounds also caused apoptosis in Caco-2 cells with maximum 9.5% increase of sub-G1 accumulations (7-oxo-ganoderic acid Z treatment) and maximum 29.84% apoptotic cells in TUNEL assay (ganoderic acid DM treatment). Contrarily, none of the compounds induced apoptosis in HepG2 cells. The different responses of the three cell lines following these treatments indicated that the bioactive properties of these compounds may vary from cells of different sites of origin and are likely acting under diverse regulatory mechanisms.