Halaminol ACAS# 389125-56-8 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 389125-56-8 | SDF | Download SDF |
PubChem ID | 10059639 | Appearance | Oil |
Formula | C14H29NO | M.Wt | 227.39 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S,3R)-2-aminotetradec-13-en-3-ol | ||
SMILES | CC(C(CCCCCCCCCC=C)O)N | ||
Standard InChIKey | KLWPMNOQFSPVII-UONOGXRCSA-N | ||
Standard InChI | InChI=1S/C14H29NO/c1-3-4-5-6-7-8-9-10-11-12-14(16)13(2)15/h3,13-14,16H,1,4-12,15H2,2H3/t13-,14+/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Halaminol A and haliclonacyclamine A have similar effects on sponge, polychaete, gastropod and bryozoan larvae, inhibit both settlement and metamorphosis, and prevent fouling and colonisation. |
Targets | Antifection |
Halaminol A Dilution Calculator
Halaminol A Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.3977 mL | 21.9887 mL | 43.9773 mL | 87.9546 mL | 109.9433 mL |
5 mM | 0.8795 mL | 4.3977 mL | 8.7955 mL | 17.5909 mL | 21.9887 mL |
10 mM | 0.4398 mL | 2.1989 mL | 4.3977 mL | 8.7955 mL | 10.9943 mL |
50 mM | 0.088 mL | 0.4398 mL | 0.8795 mL | 1.7591 mL | 2.1989 mL |
100 mM | 0.044 mL | 0.2199 mL | 0.4398 mL | 0.8795 mL | 1.0994 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Z-Glu(OtBu)-OH
Catalog No.:BCC2776
CAS No.:3886-08-6
- CK 869
Catalog No.:BCC6347
CAS No.:388592-44-7
- PSN 375963 hydrochloride
Catalog No.:BCC7663
CAS No.:388575-52-8
- Tetrahydroepiberberine
Catalog No.:BCN2649
CAS No.:38853-67-7
- Emodin-1-O-glucoside
Catalog No.:BCN8512
CAS No.:38840-23-2
- Lapatinib Ditosylate
Catalog No.:BCC2083
CAS No.:388082-78-8
- Tandutinib (MLN518)
Catalog No.:BCC4499
CAS No.:387867-13-2
- Tectoruside
Catalog No.:BCN8262
CAS No.:38784-73-5
- Muristerone A
Catalog No.:BCC2397
CAS No.:38778-30-2
- Tetrahydroisocucurbitacin I
Catalog No.:BCN7874
CAS No.:3877-89-2
- Cucurbitacin D
Catalog No.:BCN2355
CAS No.:3877-86-9
- Swazine
Catalog No.:BCN2143
CAS No.:38763-74-5
- Halaminol B
Catalog No.:BCN1748
CAS No.:389125-59-1
- Halaminol C
Catalog No.:BCN1787
CAS No.:389125-68-2
- erythro-Guaiacylglycerol
Catalog No.:BCN5440
CAS No.:38916-91-5
- Isodeoxyelephantopin
Catalog No.:BCN4638
CAS No.:38927-54-7
- SBHA
Catalog No.:BCC2425
CAS No.:38937-66-5
- Chelerythrine chloride
Catalog No.:BCN8322
CAS No.:3895-92-9
- Vitexin 4'-glucoside
Catalog No.:BCC9252
CAS No.:38950-94-6
- Isovitexin
Catalog No.:BCN5441
CAS No.:38953-85-4
- Icariside D2
Catalog No.:BCN7217
CAS No.:38954-02-8
- Piperlotine A
Catalog No.:BCN6481
CAS No.:389572-70-7
- Prasugrel hydrochloride
Catalog No.:BCC4291
CAS No.:389574-19-0
- Prasugrel Maleic acid
Catalog No.:BCC4292
CAS No.:389574-20-3
Convergent antifouling activities of structurally distinct bioactive compounds synthesized within two sympatric Haliclona demosponges.[Pubmed:18690486]
Mar Biotechnol (NY). 2009 Mar-Apr;11(2):188-98.
A wide range of sessile and sedentary marine invertebrates synthesize secondary metabolites that have potential as industrial antifoulants. These antifoulants tend to differ in structure, even between closely related species. Here, we determine if structurally divergent secondary metabolites produced within two sympatric haliclonid demosponges have similar effects on the larvae of a wide range of benthic competitors and potential fouling metazoans (ascidians, molluscs, bryozoans, polychaetes, and sponges). The sponges Haliclona sp. 628 and sp. 1031 synthesize the tetracyclic alkaloid, haliclonacyclamine A (HA), and the long chain alkyl amino alcohol, Halaminol A (LA), respectively. Despite structural differences, HA and LA have identical effects on phylogenetically disparate ascidian larvae, inducing rapid larval settlement but preventing subsequent metamorphosis at precisely the same stage. HA and LA also have similar effects on sponge, polychaete, gastropod and bryozoan larvae, inhibiting both settlement and metamorphosis. Despite having identical roles in preventing fouling and colonisation, HA and LA differentially affect the physiology of cultured HeLa human cells, indicating they have different molecular targets. From these data, we infer that the secondary metabolites within marine sponges may emerge by varying evolutionary and biosynthetic trajectories that converge on specific ecological roles.