N-MethylcoclaurineCAS# 5096-70-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 5096-70-8 | SDF | Download SDF |
PubChem ID | 440595 | Appearance | Powder |
Formula | C18H21NO3 | M.Wt | 299.37 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1R)-1-[(4-hydroxyphenyl)methyl]-6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-ol | ||
SMILES | CN1CCC2=CC(=C(C=C2C1CC3=CC=C(C=C3)O)O)OC | ||
Standard InChIKey | BOKVLBSSPUTWLV-MRXNPFEDSA-N | ||
Standard InChI | InChI=1S/C18H21NO3/c1-19-8-7-13-10-18(22-2)17(21)11-15(13)16(19)9-12-3-5-14(20)6-4-12/h3-6,10-11,16,20-21H,7-9H2,1-2H3/t16-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. N-Methylcoclaurine shows binding affinities for the ĸ opioid receptor with the equilibrium dissociation constant (Ki) value of 0.9 ± 0.1 uM. 2. N-methylcoclaurine shows promising butyrylcholinesterase inhibition activities, with the IC50 value of 15.0 ± 1.4 uM. |
N-Methylcoclaurine Dilution Calculator
N-Methylcoclaurine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.3403 mL | 16.7017 mL | 33.4035 mL | 66.807 mL | 83.5087 mL |
5 mM | 0.6681 mL | 3.3403 mL | 6.6807 mL | 13.3614 mL | 16.7017 mL |
10 mM | 0.334 mL | 1.6702 mL | 3.3403 mL | 6.6807 mL | 8.3509 mL |
50 mM | 0.0668 mL | 0.334 mL | 0.6681 mL | 1.3361 mL | 1.6702 mL |
100 mM | 0.0334 mL | 0.167 mL | 0.334 mL | 0.6681 mL | 0.8351 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Canadine
Catalog No.:BCN5626
CAS No.:5096-57-1
- Crotanecine
Catalog No.:BCN1963
CAS No.:5096-50-4
- Anacrotine
Catalog No.:BCN2057
CAS No.:5096-49-1
- Carminomycin
Catalog No.:BCC6379
CAS No.:50935-04-1, 39472-31-6
- Verminoside
Catalog No.:BCN5625
CAS No.:50932-19-9
- Mizoribine
Catalog No.:BCC4454
CAS No.:50924-49-7
- Bombinakinin M
Catalog No.:BCC5904
CAS No.:509151-65-9
- Boc-D-Arg(NO2)-OH
Catalog No.:BCC2610
CAS No.:50913-12-7
- 2-Amino-3,5-dibromobenzaldehyde
Catalog No.:BCC8523
CAS No.:50910-55-9
- IRAK-1-4 Inhibitor I
Catalog No.:BCC1659
CAS No.:509093-47-4
- 1beta-Hydroxytorilin
Catalog No.:BCN7095
CAS No.:509078-16-4
- Taiwanhomoflavone B
Catalog No.:BCN5624
CAS No.:509077-91-2
- 16-Methoxystrychnidin-10-One
Catalog No.:BCN8472
CAS No.:5096-72-0
- 7ACC1
Catalog No.:BCC5553
CAS No.:50995-74-9
- Pronethalol hydrochloride
Catalog No.:BCC5678
CAS No.:51-02-5
- Procaine HCl
Catalog No.:BCC5072
CAS No.:51-05-8
- Benzimidazole
Catalog No.:BCC8847
CAS No.:51-17-2
- Fluorouracil (Adrucil)
Catalog No.:BCC2135
CAS No.:51-21-8
- Tiratricol
Catalog No.:BCC4738
CAS No.:51-24-1
- Isoprenaline HCl
Catalog No.:BCC4328
CAS No.:51-30-9
- Scopolamine
Catalog No.:BCN5045
CAS No.:51-34-3
- H-Hyp-OH
Catalog No.:BCC3250
CAS No.:51-35-4
- Norepinephrine
Catalog No.:BCN2206
CAS No.:51-41-2
- Epinephrine Bitartrate
Catalog No.:BCC4348
CAS No.:51-42-3
Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera).[Pubmed:28197160]
Front Plant Sci. 2017 Jan 31;8:80.
The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-Methylcoclaurine 3'-hydroxylase (NMCH), and 3'-hydroxy-N-Methylcoclaurine 4'-O-methyltransferase (4'OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This transcriptomic database provides new directions for future studies on clarifying the aporphine alkaloid pathway.
Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and Their Melanogenesis Inhibitory Activity.[Pubmed:27447599]
Molecules. 2016 Jul 19;21(7). pii: molecules21070930.
A quantitative analytical method for five aporphine alkaloids, nuciferine (1), nornuciferine (2), N-methylasimilobine (3), asimilobine (4), and pronuciferine (5), and five benzylisoquinoline alkaloids, armepavine (6), norarmepavine (7), N-Methylcoclaurine (8), coclaurine (9), and norjuziphine (10), identified as the constituents responsible for the melanogenesis inhibitory activity of the extracts of lotus flowers (the flower buds of Nelumbo nucifera), has been developed using liquid chromatography-mass spectrometry. The optimum conditions for separation and detection of these 10 alkaloids were achieved on a piNAP column, a reversed-phase column with naphthylethyl group-bonded silica packing material, with CH(3)CN-0.2% aqueous acetic acid as the mobile phase and using mass spectrometry equipped with a positive-mode electrospray ionization source. According to the protocol established, distributions of these 10 alkaloids in the petal, receptacle, and stamen parts, which were separated from the whole flower, were examined. As expected, excellent correlations were observed between the total alkaloid content and melanogenesis inhibitory activity. Among the active alkaloids, nornuciferine (2) was found to give a carbamate salt (2'') via formation of an unstable carbamic acid (2') by absorption of carbon dioxide from the air.
[Studies on the chemical components of Nelumbinis Plumula and the inhibitory activity on protein disulfide isomerase].[Pubmed:29139271]
Zhongguo Zhong Yao Za Zhi. 2017 Aug;42(15):3004-3010.
Increasing evidence suggested that protein disulfide isomerase supported the survival and progression of several cancers. Nelumbinis Plumula is a Chinese traditional herb which showed antitumor activity. To find if the Nelumbinis Plumula affect protein disulfide isomerase activity, we studied its chemical constituents, and 12 monomeric compounds were isolated by means of solvent extraction, silica gel column chromatography, preparative HPLC and recrystallization. Among them, N-Methylcoclaurine, kaempferol, chrysoeriol-7-O-neohesperidoside and mannitol were obtained for the first time. Following, we tested the compounds inhibitory activity on protein disulfide isomerase. The results showed that N-Methylcoclaurine, neferine, liensinine and isoliensinine could inhibit the activity of protein disulfide isomerase in vitro, their IC(5)(0) values were 1.4, 2.9, 4.0 and 5.4 mumol*L(-)(1), respectively.
Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity.[Pubmed:25973480]
Nat Prod Commun. 2015 Apr;10(4):577-80.
Eleven isoquinoline alkaloids (1-11) were isolated from dried leaves of Peumus boldus Mol. by standard chromatographic methods. The chemical structures were elucidated by MS, and 1D and 2D NMR spectroscopic analysis, and by comparison with literature data. Compounds isolated in sufficient amount were evaluated for their acetylcholinesterase, and butyrylcholinesterase inhibition activity using Ellman's method. In the prolyl oligopeptidase assay, Z-Gly-Pro-p-nitroanilide was used as substrate. Promising butyrylcholinesterase inhibition activities were demonstrated by two benzylisoquinoline alkaloids, reticuline (8) and N-Methylcoclaurine (9), with IC50 values of 33.6 +/- 3.0 microM and 15.0 +/- 1.4 microM, respectively. Important prolyl oligopeptidase inhibition activities were shown by N-methyllaurotetanine (6) and sinoacutine (4) with IC50 values of 135.4 +/- 23.2 microM and 143.1 +/- 25.4 microM, respectively. Other tested compounds were considered inactive.
Computer-Aided (13)C NMR Chemical Profiling of Crude Natural Extracts without Fractionation.[Pubmed:28414230]
J Nat Prod. 2017 May 26;80(5):1387-1396.
A computer-aided, (13)C NMR-based dereplication method is presented for the chemical profiling of natural extracts without any fractionation. An algorithm was developed in order to compare the (13)C NMR chemical shifts obtained from a single routine spectrum with a set of predicted NMR data stored in a natural metabolite database. The algorithm evaluates the quality of the matching between experimental and predicted data by calculating a score function and returns the list of metabolites that are most likely to be present in the studied extract. The proof of principle of the method is demonstrated on a crude alkaloid extract obtained from the leaves of Peumus boldus, resulting in the identification of eight alkaloids, including isocorydine, rogersine, boldine, reticuline, coclaurine, laurotetanine, N-Methylcoclaurine, and norisocorydine, as well as three monoterpenes, namely, p-cymene, eucalyptol, and alpha-terpinene. The results were compared to those obtained with other methods, either involving a fractionation step before the chemical profiling process or using mass spectrometry detection in the infusion mode or coupled to gas chromatography.
Functional Characterization of 4'OMT and 7OMT Genes in BIA Biosynthesis.[Pubmed:26909086]
Front Plant Sci. 2016 Feb 16;7:98.
Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-Methylcoclaurine 4'-methyltransferase (4'OMT) and reticuline 7-O-methyltransferase (7OMT) genes were subjected to manipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem, and capsule tissues accordingly. Suppression of 4'OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4'OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4'OMT, and 7OMT) were observed upon manipulation of 4'OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4'OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues.