PisatinCAS# 20186-22-5 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 20186-22-5 | SDF | Download SDF |
PubChem ID | 107880 | Appearance | Powder |
Formula | C17H14O6 | M.Wt | 314.3 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
SMILES | COC1=CC2=C(C=C1)C3C(CO2)(C4=CC5=C(C=C4O3)OCO5)O | ||
Standard InChIKey | LZMRDTLRSDRUSU-DLBZAZTESA-N | ||
Standard InChI | InChI=1S/C17H14O6/c1-19-9-2-3-10-12(4-9)20-7-17(18)11-5-14-15(22-8-21-14)6-13(11)23-16(10)17/h2-6,16,18H,7-8H2,1H3/t16-,17+/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Pisatin is an isoflavonoid phytoalexin synthesized by pea (Pisum sativum L.). |
Targets | P450 (e.g. CYP17) | NADPH-oxidase |
Pisatin Dilution Calculator
Pisatin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.1817 mL | 15.9084 mL | 31.8167 mL | 63.6335 mL | 79.5418 mL |
5 mM | 0.6363 mL | 3.1817 mL | 6.3633 mL | 12.7267 mL | 15.9084 mL |
10 mM | 0.3182 mL | 1.5908 mL | 3.1817 mL | 6.3633 mL | 7.9542 mL |
50 mM | 0.0636 mL | 0.3182 mL | 0.6363 mL | 1.2727 mL | 1.5908 mL |
100 mM | 0.0318 mL | 0.1591 mL | 0.3182 mL | 0.6363 mL | 0.7954 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Tenuifolin
Catalog No.:BCN5005
CAS No.:20183-47-5
- Z-Leu-OH
Catalog No.:BCC2766
CAS No.:2018-66-8
- Ac-Phe-OH
Catalog No.:BCC3005
CAS No.:2018-61-3
- Isodiospyrin
Catalog No.:BCN4883
CAS No.:20175-84-2
- (S)-3,4-DCPG
Catalog No.:BCC7012
CAS No.:201730-11-2
- (R)-3,4-DCPG
Catalog No.:BCC7046
CAS No.:201730-10-1
- Triptocalline A
Catalog No.:BCN6783
CAS No.:201534-10-3
- Triptocallic acid D
Catalog No.:BCN4882
CAS No.:201534-09-0
- Fmoc-D-Pen(Trt)-OH
Catalog No.:BCC3309
CAS No.:201532-01-6
- Fmoc-Pen(Trt)-OH
Catalog No.:BCC3306
CAS No.:201531-88-6
- Deferasirox
Catalog No.:BCC3924
CAS No.:201530-41-8
- Dilazep dihydrochloride
Catalog No.:BCC6660
CAS No.:20153-98-4
- Magnolioside
Catalog No.:BCN2832
CAS No.:20186-29-2
- Ombuoside
Catalog No.:BCN3711
CAS No.:20188-85-6
- PTAC oxalate
Catalog No.:BCC6217
CAS No.:201939-40-4
- Epicatechin pentaacetate
Catalog No.:BCN4884
CAS No.:20194-41-6
- LY341495
Catalog No.:BCC1724
CAS No.:201943-63-7
- Kaempferol 7-O-rhamnoside
Catalog No.:BCN6489
CAS No.:20196-89-8
- Tenofovir Disoproxil Fumarate
Catalog No.:BCC1108
CAS No.:202138-50-9
- Bilastine
Catalog No.:BCC5263
CAS No.:202189-78-4
- Spiperone hydrochloride
Catalog No.:BCC6882
CAS No.:2022-29-9
- Flucytosine
Catalog No.:BCC3780
CAS No.:2022-85-7
- Spiraeoside
Catalog No.:BCC8251
CAS No.:20229-56-5
- Dregeoside Aa1
Catalog No.:BCN4678
CAS No.:20230-41-5
Characterization of pisatin-inducible cytochrome p450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin.[Pubmed:11407884]
Fungal Genet Biol. 2001 Jun;33(1):37-48.
Many fungi that are pathogenic on pea have the ability to demethylate and thus detoxify the pea phytoalexin Pisatin. This detoxification reaction has been studied most thoroughly in Nectria haematococca MP VI where it functions as a virulence trait. The enzyme catalyzing this reaction [Pisatin demethylase (pda)] is a cytochrome P450. In the current study, the induction of whole-cell pda activity and the biochemical properties of pda in microsomal preparations from the pea pathogens Ascochyta pisi, Mycosphaerella pinodes, and Phoma pinodella are compared to the pda produced by N. haematococca. Based on cofactor requirements and their inhibition by carbon monoxide, cytochrome P450 inhibitors, and antibodies to NADPH:cytochrome P450 reductase, we conclude that the pdas from the other pea pathogens also are cytochrome P450s. All of the enzymes show a rather selective induction by Pisatin, have a low K(m) toward Pisatin, and have a fairly high degree of specificity toward Pisatin as a substrate, suggesting that each pathogen may have a specific cytochrome P450 for detoxifying this plant antibiotic. Since the pdas in these fungi differ in their pattern of sensitivity to P450 inhibitors and display other minor biochemical differences, we suggest that these fungi may have independently evolved a specialized cytochrome P450 as a virulence trait for a common host.
Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen.[Pubmed:15242174]
Mol Plant Microbe Interact. 2004 Jul;17(7):798-804.
Pisatin is an isoflavonoid phytoalexin synthesized by pea (Pisum sativum L.). Previous studies have identified two enzymes apparently involved in the synthesis of this phytoalexin, isoflavone reductase (IFR), which catalyzes an intermediate step in Pisatin biosynthesis, and (+)6a-hydroxymaackiain 3-O-methyltransferase (HMM), an enzyme catalyzing the terminal step. To further evaluate the involvement of these enzymes in Pisatin biosynthesis, sense- and antisense-oriented cDNAs of Ifr and Hmm fused to the 35s CaMV promoter, and Agrobacterium rhizogenes, were used to produce transgenic pea hairy root cultures. PDA, a gene encoding Pisatin demethylating activity (pda) in the pea-pathogenic fungus Nectria haematococca, also was used in an attempt to reduce Pisatin levels. Although hairy root tissue with either sense or antisense Ifr cDNA produced less Pisatin, the greatest reduction occurred with sense or antisense Hmm cDNA. The reduced Pisatin production in these lines was associated with reduced amounts of Hmm transcripts, HMM protein, and HMM enzyme activity. Hairy roots containing the PDA gene also produced less Pisatin. To evaluate the role of Pisatin in disease resistance, the virulence of N. haematococca on the transgenic roots that produced the lowest levels of Pisatin was tested. Hairy roots expressing antisense Hmm were more susceptible than the control hairy roots to isolates of N. haematococca that are either virulent or nonvirulent on wild-type pea plants. This appears to be the first case of producing transgenic plant tissue with a reduced ability to produce a phytoalexin and demonstrating that such tissue is less resistant to fungal infection: these results support the hypothesis that phytoalexin production is a disease resistance mechanism.
EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.[Pubmed:25546618]
Molecules. 2014 Dec 23;20(1):24-34.
Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including Pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the Pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin Pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.