Syringol

CAS# 91-10-1

Syringol

2D Structure

Catalog No. BCN3534----Order now to get a substantial discount!

Product Name & Size Price Stock
Syringol: 5mg $6 In Stock
Syringol: 10mg Please Inquire In Stock
Syringol: 20mg Please Inquire Please Inquire
Syringol: 50mg Please Inquire Please Inquire
Syringol: 100mg Please Inquire Please Inquire
Syringol: 200mg Please Inquire Please Inquire
Syringol: 500mg Please Inquire Please Inquire
Syringol: 1000mg Please Inquire Please Inquire

Quality Control of Syringol

3D structure

Package In Stock

Syringol

Number of papers citing our products

Chemical Properties of Syringol

Cas No. 91-10-1 SDF Download SDF
PubChem ID 7041 Appearance Oil
Formula C8H10O3 M.Wt 154.2
Type of Compound Phenols Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 2,6-dimethoxyphenol
SMILES COC1=C(C(=CC=C1)OC)O
Standard InChIKey KLIDCXVFHGNTTM-UHFFFAOYSA-N
Standard InChI InChI=1S/C8H10O3/c1-10-6-4-3-5-7(11-2)8(6)9/h3-5,9H,1-2H3
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Syringol

The seeds of Artemisia herba-alba

Biological Activity of Syringol

Description1. Syringol and phenol have modifying effect on NMOR formation in vivo to be similar, the effect of food on NMOR levels in blood is more important than that of the modifiers.

Syringol Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Syringol Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Syringol

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 6.4851 mL 32.4254 mL 64.8508 mL 129.7017 mL 162.1271 mL
5 mM 1.297 mL 6.4851 mL 12.9702 mL 25.9403 mL 32.4254 mL
10 mM 0.6485 mL 3.2425 mL 6.4851 mL 12.9702 mL 16.2127 mL
50 mM 0.1297 mL 0.6485 mL 1.297 mL 2.594 mL 3.2425 mL
100 mM 0.0649 mL 0.3243 mL 0.6485 mL 1.297 mL 1.6213 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Syringol

Ultraviolet spectroscopy of fundamental lignin subunits: guaiacol, 4-methylguaiacol, syringol, and 4-methylsyringol.[Pubmed:24116625]

J Chem Phys. 2013 Oct 14;139(14):144313.

Ultraviolet spectroscopy of the G- and S-type lignin subunits, guaiacol (G) and Syringol (S), along with their para-methylated derivatives 4-methylguaiacol (4-MG) and 4-methylSyringol (4-MS), has been carried out in the cold, isolated environment of a supersonic jet. The excitation spectra and dispersed fluorescence (DFL) spectra of G and 4-MG show strong S0-S1 origins and Franck-Condon activity involving both the ring modes typical of aromatic derivatives, and the four lowest frequency out-of-plane modes (a") and lowest in-plane mode (a') involving the OH and OCH3 groups. The four low-frequency out-of-plane modes undergo extensive Duschinsky mixing between the ground and excited state. In 4-MG, combination bands involving methyl rotor levels with out-of-plane modes appeared with surprisingly high intensity, indicating a high degree of hindered rotor-vibration coupling in both S0 and S1. These mixing effects accompany the change in geometry upon pi-pi * electronic excitation going from a planar ground state to a non-planar excited state. Time-dependent density functional theory (TDDFT M05-2X6-311++G(d,p)) calculations predict a geometric distortion along the out-of-plane oxygen flapping coordinate, yielding a double minimum potential in S1 with a barrier to planarity of 195 cm(-1) in G. The excitation spectrum of S and 4-MS showed a much higher degree of spectral congestion and a larger geometry change evident by a shifted intensity distribution peaking approximately 300 cm(-1) above the electronic origin. TDDFT calculations predict a larger geometry change in S compared with G, with the OH and H-bonded methoxy groups displaced in opposite directions abovebelow the ring plane. Dispersed fluorescence from all S1 excited state levels in S4-MS yield only broad emission peaking far to the red of the excitation wavelength (-4500 cm(-1)). Several hypotheses regarding the source of this broad, redshifted emission were tested, but the cause remains unclear. p-Methylation was found to significantly redshift the UV absorption in both 4-MG and 4-MS, and methyl rotor transitions were assigned in both allowing for the determination of the shape and barrier heights of their respective potentials. These results provide a foundation for the discrimination of G- and S-chromophores in lignin oligomers, and demonstrate the potential for site-selective absorption.

Effects of phenol and 2,6-dimethoxyphenol (syringol) on in vivo formation of N-nitrosomorpholine in rats.[Pubmed:3708751]

Carcinogenesis. 1986 Jun;7(6):867-70.

We determined the effects of phenol and 2,6-dimethoxyphenol (Syringol) on N-nitrosomorpholine (NMOR) formation in rats given morpholine and nitrite by gavage. At 30 min post-gavage the recovery (from the stomach, duodenum and blood) of 564 micrograms NMOR was six times higher when administered to rats by gavage with 2 g of semipurified diet (SPD) than when given without food. Rats were gavaged with 12 mg each of morpholine, one of the modifiers and nitrite and examined 30 min later. Syringol decreased the amount of NMOR in both the stomach and blood by 89%, while phenol had no effect. We compared these results with those obtained with ascorbic acid and thiocyanate. The effect of ascorbic acid was similar to that of Syringol. However, thiocyanate increased the amount of NMOR in the stomach and blood 2.7- and 4-fold, respectively. When 2 g of SPD was administered to rats by gavage, together with the precursors, Syringol and ascorbic acid blocked NMOR formation in the stomach by 58 and 45%, respectively, and thiocyanate enhanced the yield 1.5-fold. The effect of phenol was not significant for the stomach and blood and that of the other modifiers was not significant for blood. Administration of the reactants together with food decreased the NMOR level in blood 155-fold relative to controls (no food), suggesting that food decreased the absorption rate over a 30-min period. These results demonstrate the modifying effect of phenol and Syringol on NMOR formation in vivo to be similar to that observed in a previous in vitro study, and show that the effect of food on NMOR levels in blood was more important than that of the modifiers.

Keywords:

Syringol,91-10-1,Natural Products, buy Syringol , Syringol supplier , purchase Syringol , Syringol cost , Syringol manufacturer , order Syringol , high purity Syringol

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: