α-CGRP (human)CGRP receptor agonist CAS# 90954-53-3 |
- Dihydroberberine
Catalog No.:BCN2573
CAS No.:483-15-8
- Pectolinarigenin
Catalog No.:BCN5813
CAS No.:520-12-7
- Carnosol
Catalog No.:BCN1055
CAS No.:5957-80-2
- Hypaconine
Catalog No.:BCN8640
CAS No.:63238-68-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 90954-53-3 | SDF | Download SDF |
PubChem ID | 90488793 | Appearance | Powder |
Formula | C163H267N51O49S2 | M.Wt | 3789.33 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 0.50 mg/ml in water | ||
Sequence | ACDTATCVTHRLAGLLSRSGGVVKNNFVPT (Modifications: Phe-37 = C-terminal amide, Disulfide bridge between 2 - 7) | ||
Chemical Name | 2-[(4R,7S,10S,13S,16S,19R)-4-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-2-oxoethyl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamoyl]-19-[[(2S)-2-aminopropanoyl]amino]-7,13-bis[(1R)-1-hydroxyethyl]-10-methyl-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicos-16-yl]acetic acid | ||
SMILES | CC1C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)N1)C(C)O)CC(=O)O)NC(=O)C(C)N)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(CC2=CNC=N2)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(CO)C(=O)NCC(=O)NCC(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(CC(=O)N)C(=O)NC(CC3=CC=CC=C3)C(=O)NC(C(C)C)C(=O)N4CCCC4C(=O)NC(C(C)O)C(=O)NC(CC(=O)N)C(=O)NC(C(C)C)C(=O)NCC(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CC5=CC=CC=C5)C(=O)N)C(C)O | ||
Standard InChIKey | JMJJWZFCOWFIBU-XJVRLEFXSA-N | ||
Standard InChI | InChI=1S/C163H267N51O49S2/c1-73(2)52-97(186-116(226)65-179-131(233)82(18)183-139(241)98(53-74(3)4)193-137(239)94(44-35-49-176-162(171)172)188-142(244)101(57-91-62-175-72-182-91)199-159(261)128(88(24)221)213-156(258)123(79(13)14)207-151(253)110-71-265-264-70-109(203-130(232)81(17)166)150(252)198-105(61-119(229)230)147(249)211-125(85(21)218)157(259)185-84(20)133(235)210-126(86(22)219)160(262)204-110)140(242)194-99(54-75(5)6)141(243)202-108(69-217)149(251)190-95(45-36-50-177-163(173)174)138(240)201-106(67-215)134(236)180-63-115(225)178-64-118(228)205-121(77(9)10)155(257)208-122(78(11)12)154(256)191-93(43-32-34-48-165)136(238)196-102(58-112(167)222)144(246)197-103(59-113(168)223)143(245)195-100(56-90-40-29-26-30-41-90)145(247)209-124(80(15)16)161(263)214-51-37-46-111(214)152(254)212-127(87(23)220)158(260)200-104(60-114(169)224)146(248)206-120(76(7)8)153(255)181-66-117(227)187-107(68-216)148(250)189-92(42-31-33-47-164)135(237)184-83(19)132(234)192-96(129(170)231)55-89-38-27-25-28-39-89/h25-30,38-41,62,72-88,92-111,120-128,215-221H,31-37,42-61,63-71,164-166H2,1-24H3,(H2,167,222)(H2,168,223)(H2,169,224)(H2,170,231)(H,175,182)(H,178,225)(H,179,233)(H,180,236)(H,181,255)(H,183,241)(H,184,237)(H,185,259)(H,186,226)(H,187,227)(H,188,244)(H,189,250)(H,190,251)(H,191,256)(H,192,234)(H,193,239)(H,194,242)(H,195,245)(H,196,238)(H,197,246)(H,198,252)(H,199,261)(H,200,260)(H,201,240)(H,202,243)(H,203,232)(H,204,262)(H,205,228)(H,206,248)(H,207,253)(H,208,257)(H,209,247)(H,210,235)(H,211,249)(H,212,254)(H,213,258)(H,229,230)(H4,171,172,176)(H4,173,174,177)/t81-,82-,83-,84-,85+,86+,87+,88+,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,120-,121-,122-,123-,124-,125-,126-,127-,128-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Endogenous calcitonin gene-related peptide receptor (CGRP) agonist. |
α-CGRP (human) Dilution Calculator
α-CGRP (human) Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Cl-HIBO
Catalog No.:BCC7147
CAS No.:909400-43-7
- Erythrocentauric acid
Catalog No.:BCN7683
CAS No.:90921-13-4
- Broussonin E
Catalog No.:BCN4452
CAS No.:90902-21-9
- M871
Catalog No.:BCC5930
CAS No.:908844-75-7
- α-helical CRF 9-41
Catalog No.:BCC5727
CAS No.:90880-23-2
- Aprotinin
Catalog No.:BCC1220
CAS No.:9087-70-1
- Ptelatoside B
Catalog No.:BCN4451
CAS No.:90852-99-6
- ent-Labda-8(17),13E-diene-3beta,15,18-triol
Catalog No.:BCN7662
CAS No.:90851-50-6
- Goshonoside F5
Catalog No.:BCN6442
CAS No.:90851-28-8
- Goshonoside F1
Catalog No.:BCN6444
CAS No.:90851-24-4
- Cyclo(Ile-Ala)
Catalog No.:BCN2429
CAS No.:90821-99-1
- PF-04929113 (SNX-5422)
Catalog No.:BCC2130
CAS No.:908115-27-5
- W146
Catalog No.:BCC7723
CAS No.:909725-61-7
- A 83-01
Catalog No.:BCC1319
CAS No.:909910-43-6
- 8-Methoxybonducellin
Catalog No.:BCN4453
CAS No.:90996-27-3
- 2-Benzoylpyridine
Catalog No.:BCC8562
CAS No.:91-02-1
- 2,6-Bis(hydroxymethyl)-p-cresol
Catalog No.:BCC8505
CAS No.:91-04-3
- Syringol
Catalog No.:BCN3534
CAS No.:91-10-1
- Coumarin
Catalog No.:BCN6309
CAS No.:91-64-5
- Benzoguanamine
Catalog No.:BCC8853
CAS No.:91-76-9
- N,N'-Bis(acetoacetyl)-o-toluidine
Catalog No.:BCC9062
CAS No.:91-96-3
- Fmoc-Arg-OH
Catalog No.:BCC3039
CAS No.:91000-69-0
- Impurity of Calcipotriol
Catalog No.:BCC5388
CAS No.:910133-69-6
- CGI-1746
Catalog No.:BCC1473
CAS No.:910232-84-7
Calcitonin gene-related peptide (human alpha-CGRP) counteracts vasoconstriction in human subarachnoid haemorrhage.[Pubmed:8041516]
Neurosci Lett. 1994 Mar 28;170(1):67-70.
Calcitonin gene-related peptide (CGRP) is a neuropeptide co-stored with tachykinins (substance P, neurokinin A) in cerebrovascular sensory fibers in the trigeminal ganglion. Preceding studies on subarachnoid hemorrhage (SAH) revealed that an enhanced release of CGRP resulted in the selective loss of perivascular CGRP. Therefore, the present study was designed to evaluate the effects of intravenous administration of human alpha-CGRP on cerebral vasoconstriction in the postoperative course after SAH in 5 patients (8 infusions). Cerebral vasoconstriction was evaluated with transcranial Doppler sonography. The increase in the relationship between middle cerebral artery (MCA) velocity and internal carotid artery (ICA) velocity (the hemodynamic index) was used as an indicator of vasoconstriction and compared to the contralateral side. A significant reduction was found in the hemodynamic index during the CGRP infusion (4.3 +/- 0.5, P < 0.05) as to compared to before infusion (6.2 +/- 0.5). There was no measurable change in the hemodynamic index on the contralateral side. No significant change was observed in pulsatility index, blood pressure or consciousness during the peptide infusion. A significant increase in heart rate was observed during the infusion as compared to before and after infusion (90 +/- 4 vs. 76 +/- 5). Cardiac ultrasound data indicated a mean cardiac output increase of 1.9 liter/min, and a mean decrease in total peripheral resistance of 538 dynes s/cm5. The results obtained show that infusion of human alpha-CGRP may induce normalisation of cerebrovascular tone in SAH.
CGRP antagonist activity of short C-terminal fragments of human alpha CGRP, CGRP(23-37) and CGRP(19-37).[Pubmed:1336185]
Peptides. 1992 Sep-Oct;13(5):1025-7.
The activity of short C-terminal fragments of human alpha calcitonin gene-related peptide (CGRP), CGRP(19-37), and CGRP(23-37), and of the N-terminally acetylated (Ac) derivative, AcCGRP(19-37), has been investigated in the guinea pig isolated left atria (electrically driven) for their ability to antagonize the positive inotropic effect of human alpha CGRP. All the peptides tested produced a rightward displacement of the curve to the agonist without depressing the maximal response: apparent pA2 values were 5.39 and 4.81 for CGRP(19-37) and CGRP(23-37), respectively, as compared to 6.81 for CGRP(8-37). AcCGRP(19-37) was a more potent antagonist than the parent peptide, with an apparent pA2 value of 6.03.
BIBN4096BS and CGRP(8-37) antagonize the relaxant effects of alpha-CGRP more than those of beta-CGRP in human extracranial arteries.[Pubmed:15983761]
Naunyn Schmiedebergs Arch Pharmacol. 2005 May;371(5):383-92.
We hypothesize that dilatation of extracranial arteries during migraine could be caused by CGRP. We compared the relaxant effects of alpha-calcitonin gene-related peptide (alpha-CGRP) and beta-calcitonin gene-related peptide (beta-CGRP) and the antagonism by BIBN4096BS and CGRP(8-37) on rings of human temporal and occipital arteries precontracted with KCl. beta-CGRP relaxed temporal (-logEC50M = 8.1) and occipital arteries (-logEC50M = 7.6) with 19-fold and 29-fold lower potencies respectively than alpha-CGRP. Nearly maximal effective concentrations of alpha-CGRP (4 nM) and beta-CGRP (50 nM) caused stable relaxations of the temporal artery for 4 h without fading. BIBN4094BS antagonized the effects of alpha-CGRP (pK(B) = 10.1 and 9.9, respectively) more than beta-CGRP (pK(B) = 9.3 and 9.2 respectively) on both temporal and occipital arteries. CGRP(8-37) antagonized the effects of alpha-CGRP (pK(B) = 6.6 and 6.4 respectively) more than beta-CGRP (pK(B) = 5.7 and 5.5 respectively) on both temporal and occipital arteries. Antagonism of the relaxant effects of alpha-CGRP (4 nM) and beta-CGRP (50 nM) by BIBN4096BS (10 and 100 nM) was reversible for beta-CGRP, but irreversible for alpha-CGRP, 1 h after BIBN4096BS washout. We conclude that alpha-CGRP and beta-CGRP interact either at different binding sites of the same CGRP receptor system or all together with different receptor systems in human extracranial arteries. BIBN4096BS binds more firmly to the receptor activated by alpha-CGRP than to the receptor activated by beta-CGRP.
BIBN4096BS is a potent competitive antagonist of the relaxant effects of alpha-CGRP on human temporal artery: comparison with CGRP(8-37).[Pubmed:11976276]
Br J Pharmacol. 2002 May;136(1):120-6.
Release of CGRP during migraine may produce harmful dilatation of cranial arteries, thereby possibly causing pain. We have compared the antagonism by BIBN4096BS and CGRP(8-37) of the relaxant effects of alpha-CGRP on rings of human temporal artery. alpha-CGRP relaxed the arteries precontracted with 9 - 24 mM KCl (-logEC50=9.4) nearly as efficaciously as sodium nitroprusside (10 microM). BIBN4096BS (0.1 - 100 nM) antagonized the effects of alpha-CGRP in surmountable manner with slopes of Schild-plots not different from unity. -LogKB values of 10.1 and 10.4 were estimated for BIBN4096BS when administered before or during the KCl-contracture respectively. BIBN4096BS (1 microM) did not modify the relaxant effects of papaverine and sodium nitroprusside. CGRP(8-37) (1 - 10 microM) antagonized the effects of alpha-CGRP in a surmountable manner with slopes of Schild-plots not different from unity. -LogKB values of 6.6 and 6.7 were estimated for CGRP(8-37) administered before or during the KCl-contracture respectively. The high affinity of BIBN4096BS for CGRP receptors of human temporal artery makes it an excellent tool to explore the hypothesis of CGRP-evoked cerebral vasodilation in migraine.